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    Chapter 1   
 Tumor Microenvironment                     

    Abstract     Tumor microenvironment plays an important role in the initiation and 
progression of tumors. Studies on neoplastic transformation have focused on events 
that occur within tumor cells, and have addressed the microenvironment of tumor 
cells documenting its importance in supporting tumor progression. Before meta-
static dissemination, primary tumors secrete factors that contribute to the develop-
ment of a pre-metastatic niche, rendering the microenvironment more receptive to 
tumor growth.  

  Keywords     Bone marrow microenvironment   •   Endothelial cells   •   Extracellular 
matrix   •   Epithelial mesenchymal transition   •   Fibroblasts   •   Hematopoietic stem cells   
•   Hypoxia   •   Hypoxia inducible factors   •   Macrophages   •   Mast cells   •   Mesenchymal 
stem cells   •   Metastasis   •   Osteoblast niche   •   Stromal cells   •   Tumor microenvironment   
•   Vascular niche  

          Douglas Hanahan and Robert A. Weinberg ( 2000 ,  2011 ) (Figs.  1.1  and  1.2 )  defi ned   
the hallmarks of cancer that encompass key biological capabilities including sus-
tained proliferation, evasion of growth suppression, death resistance, replicative 
immortality,  angiogenesis  , invasion, dysregulation of cellular energetic, avoidance 
of immune destruction and chronic  infl ammation  .

    The fi nal emerging cancer hallmark is metabolic reprogramming of tumor cells. 
Termed Warburg effect, tumor cells shift from predominantly aerobic glycolysis 
toward anaerobic glycolysis. Even in the presence of high oxygen tension, tumor 
cells exploit the anaerobic metabolic process to facilitate rapid cell division (Gillies 
et al.  2008 ). 

 Tumor mass dormancy or angiogenic dormancy occurs when proliferation is bal-
anced by apoptosis because of a lack of vasculature and limited supply of nutrients 
and oxygen. Re-establishment of vasculature is favored by hematopoietic precursor 
cells (HPCs) and endothelial precursor cells (EPCs) expressing  vascular endothelial 
growth factor receptors (VEGFRs)   and by  dendritic cell   precursors that can differ-
entiate into endothelial-like cells. Once tumor cells overcome dormancy, they 
become receptive to other cells which further support their expression. 

 Tumor microenvironment plays an important role in the initiation and progres-
sion of tumors (Balkwill and Mantovani  2002 ; Hussain and Harris  2007 ). Studies on 
neoplastic transformation have focused on events that occur within transformed 
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cells, and have addressed the microenvironment of tumor cells documenting its 
importance in supporting tumor progression. The pathogenesis of most cancers 
includes complex and mutual interactions that affect the number and phenotype of 
the tumor cells and various normal  stromal cells  , and intricate tumor- 
microenvironmental interactions are increasingly recognized as critical features of 
several neoplasias. 

 Tumors are often hypoxic in spite of high vascularization due to the poor struc-
ture and functionality of  tumor blood vessels  .  Hypoxia   in tumors develops in form 
of chronic hypoxia, resulting from long diffusion distances between perfused tumor 
vessels and/or of acute hypoxia, resulting from a transient collapse of tumor vessels. 
 Hypoxia inducible factors (HIFs)   are activated in these series of events. Intratumoral 
 hypoxia   is a main cause of high reactive oxygen species (ROS) formation within the 
tumor cells (Guzy and Schumacker  2006 ) and also is coupled to pathological tumor 
cell metabolism and acidosis (Denko  2008 ). Hypoxic tumor cells have the ability to 
create an immunosuppressive microenvironment. Through the ability to produce 
HIF-1 alpha (HIF-1α), tumor necrosis factor alpha (TNF-α) and  stromal cell   derived 
factor-1 (SDF-1), hypoxic tumor cells produce the homing of CD45 +  myeloid cells 
to tumor site, including subpopulations defi ned by the expression of Tie-2, 

  Fig. 1.1    A portrait of 
Douglas Hanahan. In 2000, 
Hanahan and Weinberg 
published a classic paper 
entitled “The Hallmarks of 
Cancer” in the journal Cell. 
This classic paper was 
updated in 2011 to add two 
additional “emerging” 
hallmarks”       

  Fig. 1.2    A portrait of 
Robert Weinberg       
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VEGFR- 1, and/or CD11b, as well as tumor associated macrophages (TAMs) 
(Du et al.  2008 ; Mantovani et al.  2008 ). 

 Stimulation of  angiogenes  is in the context of ongoing  infl ammation   is usually 
related to  hypoxia  . HIF-NF-kB cross-talk present a basal molecular mechanism 
infl uencing infl ammatory angiogenesis. NF-kB is a direct modulator of HIF-1α 
expression, as NF-kB binding site is present in HIF-1α promoter region (Table  1.1 ).

    Hypoxia   mediates immune cells recruitment and these cells concentrate at the 
tumor periphery, while in the tumor core hypoxia contributes to cancer cell escape 
by providing an aggressive selection for stem-like tumor cells that migrate away to 
the tumor margin. Hypoxic areas are refractory to chemo and radiotherapy and con-
tribute to select tumor populations able to survive in poorly oxygenated niches and 
escape to metastatic sites and pro-angiogenic  cancer stem cells (CSCs)  . HIF-1α acts 
as a survival factor for cancer cells by activating the transcription of genes involved 
in  angiogenesis  , proliferation and migration of  endothelial cells (ECs)  ,  pericyte   
recruitment, and changes in vascular permeability (Table  1.2 ). Persistent extravasation 

  Table 1.1    Pro-angiogenic 
factors induced by  hypoxia   
via NF-kB pathway  

 NF-kB pathway 

 IL-1β, IL-6, IL-8 
 COX-2 
 TNF-α 
 MIP-2 
 ICAM 
 VCAM 
 CCL-5 
 iNOS 

  Table 1.2    Genes activated 
by  hypoxia   inducible factor-1 
alpha  

  Involved in    angiogenesis    
  VEGF   
 PlGF 
 VEGFR-1 
  Involved in    endothelial cell     proliferation 
and migration  
 VEGF 
 PlGF 
 FGF-2 
 CXCL12/CXCR4 
 PDGF 
  Involved in    pericyte     recruitment  
 PDGF 
 Ang-1 
  Involved in changes in vascular permeability  
 VEGF 
 VEGFR-1 
 Ang-1 

1 Tumor Microenvironment
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of cells enables activation of angiogenic response due to the constant and abundant 
release of infl ammatory stimuli, which are also pro-angiogenic molecules or 
stimulate generation of such factors.

    Hypoxia   can increase the invasive potential of cancer cells by inducing the 
production of pro-migratory proteins (e.g. SDF-1α and hepatocyte growth factor, 
HGF) and pro-invasive  extracellular matrix   proteins (Semenza  2014 ). 

  Bone marrow (BM) microenvironment   comprises  hematopoietic stem cells 
(HSCs)   and non-hematopoietic cells (HCs). HSCs give rise to all the blood cell 
types of the myeloid and lymphoid lineages (Krause  2002 ). The non-hematopoietic 
cells include ECs,  pericytes  ,  fi broblasts  ,  osteoblasts  ,  osteoclasts  ,  macrophages  , 
 mast cells  , and  mesenchymal stem cells (MSCs)   (Kopp et al.  2005 ). These cells 
constitute specialized niches, closed to the endosteum, named “osteoblast or endos-
teal niche”, or to the BM vasculature, named  vascular niche   (Wilson and Trumpp 
 2006 ) (Fig.  1.3 ).

   Bissell and Radisky ( 2001 ) pointed out that tumors evolve from an organ and 
retain memory of that organ and that once they liberate themselves from the con-

  Fig. 1.3    Interactions occurring in the bone marrow niches in  multiple myeloma  . The non- 
hematopoietic cells contribute to formation of two specialized niches: an “ osteoblastic   niche” 
which is closed to endosteum, and a “ vascular niche  ” which is closed to the bone marrow vascula-
ture (Reproduced from Ribatti et al. ( 2014 ))       
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straints of the normal tissue microenvironment and lose the organ-specifi c structure 
as they evolve into the tumor organs and constantly redefi ne themselves by their 
ever-changing context. 

1     Metastatic Cascade 

 In 1899, Stepen Paget proposed in a study conducted on autopsy records of 735 
women who had died of breast cancer, that the process of  metastasis   did not occur 
by chance but, rather, that certain favored tumor cells, with metastatic activity (the 
“seed”) had a special affi nity for the growth-enhancing milieu within specifi c organs 
(the “soil”), i.e. organs providing a growth advantage to the seeds. He concluded 
that metastases developed only when the seed and soil were compatible (Paget 
 1899 ) (Fig.  1.4 ). In other words, Paget suggested that the site of  metastasis   depended 
on the affi nity of the tumor to the microenvironment and this theory has been widely 
accepted as a basic principle in the fi eld of cancer  metastasis  .

   In 1928, James Ewing proposed that metastatic dissemination of cancer was 
dependent on the anatomical distribution of the vascular system (Ewing  1928 ) 
(Fig.  1.5 ). This controversy was resolved by Fidler (Fig.  1.6 ) and collaborators, who 
studied experimental  metastasis   in syngeneic mice to show that subsequent meta-
static growth at a distant organ site was site-specifi c, consistent with Paget’s original 
hypothesis (Hart  1979 ).

  Fig. 1.4    A portrait of 
Stephen Paget. In 1899, he 
published his “seed and 
soil” explanation of 
non-random pattern of 
 metastasis   (Reproduced 
from Ribatti ( 2010 ))       
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    It has long been accepted that most malignant tumors show an organ-specifi c 
pattern of  metastasis  . For example, colon carcinomas metastasize usually to liver 
and lung but rarely to bone, skin or brain and almost never to kidney, intestine or 
muscle. In contrast, other tumor entities, such as breast carcinomas, frequently form 
metastases in most of these organs. 

  Fig. 1.5    A portrait of 
James Ewing. In 1928, he 
proposed that  metastasis   
occurs purely by anatomic 
and mechanical routes 
(Reproduced from   http://
wilkipedia.org    )       

  Fig. 1.6    A portrait of Isaiah Fidler (Reproduced from   http://www.mdanderson.org    )       
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 This specifi c formation of secondary tumors at distant sites appears to require a 
number of steps which must be successfully completed by metastasizing tumor cells 
(Chambers et al.  2002 ). Various explanations have been proposed for the site 
selectivity of blood-bone metastases, including tumor cell surface characteristics 
(Turner  1982 ), response to organ-derived chemotactic factors (Hujanen and 
Terranova  1985 ), adhesion between tumor cells and the target organ components 
(Nicolson  1988 ) and response to specifi c host tissue growth factors (Nicolson and 
Dulski  1986 ). The relative importance of pre-existing tumor subpopulations with 
specifi c metastatic properties and the organ environment characteristics in deter-
mining metastatic homing have been debated (Weiss  1979 ; Talmadge and Fidler 
 1982 ). 

 An alternative explanation for the different sites of tumor growth involves inter-
actions between the metastatic cells and the organ environment, in terms of specifi c 
binding to  ECs   and responses to local growth factors. The mechanisms by which 
cancer cells transmigrate through the endothelial lining are not well understood. 
Signaling cross-talk between cancer cells and ECs may involve upregulation of 
adhesion molecule expression by the endothelium as well as by the tumor cells, 
reorganization of the acto-myosin cytoskeleton, and Src-mediated disruption of 
endothelial VE-cadherin-β-catenin cell-cell adhesion. 

 ECs in the vasculature of different organs express different cell-surface receptors 
and growth factors that infl uence the phenotype of the corresponding metastases. 
Greene and Harvey ( 1964 ) suggested that the organ distribution patterns of meta-
static foci were dependent on the formation of suffi cient adhesive bonds between 
arrested tumor cells and ECs, and they hypothesized that these interactions were 
similar to  lymphocyte  /ECs at sites of  infl ammation  . The development of organ- 
derived microvascular EC cultures has allowed more specifi c studies on the prefer-
ential homing of tumor cells. Auerbach et al. ( 1985 ,  1987 ) found that different 
tumors showed differences in their adhesive propensity and preference for different 
ECs, and in a few cases preferential adhesion was observed to the ECs derived from 
the organ of origin and the target organ. 

 In a number of cancer types, including breast cancer,  melanoma  , prostate cancer, 
gastric cancer, and colon cancer, the occurrence of  metastasis   in the tumor draining 
lymph node (the “sentinel” lymph node) is regarded the fi rst step in metastatic can-
cer dissemination. Tumor-induced changes in the sentinel lymph node include 
changes in the immune composition of the lymph node, in terms of changes in the 
density and maturation state of  dendritic cells   and T cells, in the cytokine composi-
tion, and the ability of the immune cells to generate a specifi c immune response 
(Cochran et al.  2006 ). 

 Before metastatic dissemination, primary tumors secrete factors that contribute 
to the development of a pre-metastatic niche, characterized by the presence of an 
increased number of  fi broblasts   and secreted cytokines rendering the microenviron-
ment receptive to tumor growth. Bone marrow-derived VEGFR1 +  cells interfered 
with the formation of these clusters and blocked  metastasis   (Kaplan et al.  2005 ). At 
secondary sites, angiogenic dormancy is characterized by avascular micrometa-
static lesions that do not grow beyond 1–2 mm in diameter because of balance 

1 Metastatic Cascade
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between proliferation and apoptosis. A dormant niche is associated with mature 
vessels and endothelial derived thrombospondin-1 (TSP-1), whereas metastatic out-
growth is associated with sprouting vessels and production of periostin and trans-
forming growth factor beta (TGF-β) (Ghajar et al.  2013 ).  

2     Epithelial-Mesenchymal Transition 

  One of the  initial   steps of primary tumor invasion is the epithelial mesenchymal 
transition (EMT), during which tumor cells lose epithelial markers and gain mesen-
chymal traits that confer stem-like properties and a migratory phenotype (Mani 
et al.  2008 ) (Fig.  1.7 ). During EMT, epithelial cells exhibit morphological changes: 
tight junctions, adherens junctions, desmosomes, and gap junctions are lost and the 
cells undergo actin cytoskeleton reorganization. Decreased E-cadherin function is 
another component of EMT, invasive tumor growth and  metastasis  . Perl et al. 
( 1998 ), using E-cadherin knock-out mice and dominant-negative forms of this 
protein, showed that loss of E-cadherin was associated with pancreatic cell 
carcinogenesis.

   The EMT promotes the generation of  tumor associated fi broblasts (TAFs)   
whereby tumor cells of epithelial origin dedifferentiate to generate a mesenchymal- 
like population that express TAF markers (Petersen et al.  2003 ). At later stages of 
 metastasis  , secondary lesions display an epithelial-like phenotype, suggesting that 
 mesenchymal-epithelial transition (MET)   is important for metastatic outgrowth 
(Chaffer et al.  2007 ). TGF-β promotes EMT and single cell motility, which enables 
invasion into blood vessels, while in the absence of TGF-β cells are restricted to 

  Fig. 1.7    Schema of  epithelial-mesenchymal transition   (Reproduced from Samarasinghe ( 2013 ))       
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collective movement and lymphatic spread (Giampieri et al.  2010 ). TGF-β is an 
early tumor suppressor that can subsequently promote tumor progression through 
tumor-stroma interactions resulting in  metastasis  , immune evasion, and stimulation 
of  angiogenesis   (Ikushima and Miyazono  2010 ). 

  Macrophages  ,  platelets   and  MSCs   contribute to  EMT   at primary sites, allowing 
tumor cells to separate from neighboring epithelial cell-cell contacts and acquire a 
mobile and invasive phenotype. During intravasation of tumor cells into the circula-
tion, intravital imaging studies have shown that macrophages are localized to peri-
vascular areas within tumors, where they help tumor cells to traverse vessel barriers. 
 Platelets   escort tumor cells in the circulation to the site of extravasation, where they 
bind to areas of vascular retraction and help tumor cells to exit the circulation into 
secondary organs.  Myeloid derived suppressor cells (MDSCs)   and natural killer 
(NK) cells populate pre-metastatic niches, where they help metastatic dissemination 
by creating a niche permissive to tumor colonization.  Fibroblasts   upregulate fi bro-
nectin, which serves as docking for  HSCs   and the arrival of tumor cells.   

3     The Extracellular Matrix 

  The  extracellular matrix (ECM)   is composed of a biopolymer fi ber networks of 
proteins, proteoglycans that differ in composition and structure between different 
locations. The ECM forms a mechanically stable support for epithelial cells, allows 
for the diffusion of oxygen and nutrients between the microvasculature and adjacent 
tissues and enables the traffi cking of freely moving cells (Fig.  1.8 ).

   The ECM provides critical and biomechanical cues that direct cell growth, sur-
vival, migration and differentiation, and modulate vascular development and 
immune function. Diseases associated with biochemical ECM changes are corre-
lated with increased propensity for the development of cancer. A collagen-rich ECM 
promotes  macrophage   proliferation and activation (Welsey et al.  1998 ) and favors a 

  Fig. 1.8    A schematic drawing of the  extracellular matrix   organization (Reproduced from Neve 
et al. ( 2014 ))       
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pro-tumorigenic M2 polarization phenotype, whereas a fi bronectin-rich ECM 
promotes the M1 or anti-tumorigenic potential of macrophages (Perri et al.  1982 ; 
Sathl et al.  2013 ). 

 A correlation between fi brotic stroma and cancer is well established in the liver 
(Maher and Bissell  1993 ) and increased stromal density correlates with a higher 
likelihood of developing breast cancer (Wolfe  1976 ). Gene-expressing profi ling has 
shown that genes encoding for ECM components are dysregulated during tumor 
progression  (Eckhardt et al.  2005 ).        

1 Tumor Microenvironment
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    Chapter 2   
 Tumor Blood Vessels and Tumor Endothelial 
Cells                     

    Abstract     Tumor endothelial cells contribute to tumor progression through 
 recruitment of endothelial precursor cells and changes in the structure of the exist-
ing vascular endothelium creating an escape route for cancer cells to generate 
metastases. The tumor-associated endothelium is structurally defective, express 
several cell surface markers absent in quiescent blood vessels, and present several 
gene expression abnormalities. Pericytes defi ciency could be responsible for vessel 
abnormalities in tumor blood vessels and partial dissociation of pericytes contribute 
to increased tumor vascular permeability.  

  Keywords     Angiopoietin   •   Basement membrane   •   Capillary   •   Endostatin   •   Gene 
expression profi le   •   Laminin   •   Multiple myeloma   •   Neuroblastoma   •   Pericyte   • 
  Platelet derived growth factor   •   Tenascin   •   Tumor blood vessels   •   Vascular endothelial 
growth factor   •   Vascular endothelial growth factor receptor   •   Vascular leakage  

            Tumor blood vessels      are irregular in size, shape, and branching pattern, lack the 
normal hierarchy and do not display the recognizable features of arterioles, capillar-
ies or venules. Their haphazard branching patterns and larger, less regular diameters 
contribute to the non-uniform perfusion of tumor cells. Tumor vessel leakiness and 
compression create a vicious cycle responsible for both acute and chronic  hypoxia  . 

 Abnormalities are present in all components of the vessels wall. The organ and 
tissue-specifi c vascular architecture is not retained. Even large caliber vessels are 
mainly composed of just an endothelium and a  basement membrane  . 

 Vessel density is heterogeneous: the highest values are usually found in what is 
commonly known as the invading tumor edge, where the density is four to ten times 
greater than inside the tumor (Giatromanolaki et al.  2002 ). The arrangement of ves-
sels in the centre of a tumor is much more chaotic than at its edges. 

 ECs of mature, quiescent vessels are characteristically low proliferative and their 
estimated turnover times are measured in years, whereas those of tumor vessels are 
markedly dependent on growth factors for survival.  VEGF   has been assigned a cen-
tral role in the induction of host vessels into a growing tumor. 

 ECs contribute at least in two ways to tumor progression; fi rst, recruitment of 
EPCs stimulates the sprouting of new tumor blood vessels; second, changes in the 
structure of the existing vascular endothelium create an escape route for cancer cells 
to generate distant metastases. 
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 When ECs invade a newly formed tumor, they come into contact with tumor cells 
that produce  VEGF  , which may be responsible not only for vascular proliferation, 
but also for the altered permeability of the newly formed vessels. 

 Tumor ECs proliferate 50–200 times faster than normal EC (Vermeulen et al. 
 1995 ). Their constantly proliferation rate refl ects the  angiogenesis   that accompanies 
an increase in tumor volume, whereas in other regions they undergo apoptosis in 
parallel with tumor necrosis and vessel regression. 

 The tumor-associated endothelium is structurally defective. Discontinuities or 
gaps (<2 μm in diameter) that allow hemorrhage and facilitate permeability are 
common features (Fig.  2.1 ). Cells contacts are usually poorly differentiated and no 
complex contact structures exist. Defects in EC barrier function, due to abnormal 
cell-cell junctions and other changes, exaggerate leakiness. This correlates with his-
tological grade and malignant potential (Daldrup et al.  1998 ) and can be exploited 
in locating tumors by imaging contrast media and in the delivery of macromolecular 
therapeutics (Mc Donald and Choyke  2003 ). Furthermore, it results in extravasation 
of plasma proteins and even erythrocytes and may facilitate the traffi c of tumor cells 
into the bloodstream and the formation of metastases (Dvorak et al.  1988 ). Leakiness 
has been attributed to highly active  angiogenesis   and microvascular remodeling, but 
its structural basis and mechanism are unclear. Intercellular gaps, transendothelial 
holes, vesciculo-vacuolar organelles (VVOs, traverse ECs from lumen to albumen 
and additionally open to the interendothelial cell cleft), and endothelial fenestrae are 
present in the endothelium of tumor vessels (Dvorak et al.  1988 ).

   Tumor ECs also differ for the profi le and level of cell adhesion molecule they 
express. They preferentially overexpress the cell-surface molecules that are absent 
in quiescent blood vessels, including integrin αvβ3 and αvβ5, the fi bronectin EBD 
domain, E-selectin, endoglin, endosialin,  VEGFRs  , and prostate specifi c membrane 

  Fig. 2.1    Ultrastructural morphology of a fenestrated  capillary   in the stroma of a low-grade human 
 lymphoma   showing fl at  endothelial cells (EC)   with a fenestra ( arrowhead ) (Reproduced from 
Ribatti et al.  1996 )       
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antigen (PSMA), all of which stimulate endothelium adhesion and migration 
(Thorpe  2004 ; Magnussen et al.  2005 ). Tumors treated with antagonists of integrin 
αv β3 display increased apopotosis and vessel regression (Table  2.1 ). One feature of 
the role of integrin αv β3 is that it mediates ECs adhesion to ECM molecules. 
Vascular endothelial cadherin (VE-cadherin) is poorly expressed in tumor vessels. 
It results in their destabilization and may lead to abnormal remodeling.

   ECs lining  tumor blood vessels   express several cell surface markers that are 
absent in quiescent blood vessels. Ligand-directed vascular targeting can be accom-
plished by antibodies, specifi c peptides or growth factors complexed with immuno-
modulatory, procoagulant or cytotoxic molecules (Thorpe  2004 ). 

  VEGF   and its receptors (Fig.  2.2 ) are up-regulated in  tumor microenvironment  , 
leading to a high concentration of occupied receptors on tumor vascular endothe-
lium.  VEGF   immediate, short term (minutes) activity consists in increase of micro-

  Table 2.1    Inhibition of 
integrin signaling represses 
invasion and integrin 
downstream represent viable 
therapeutic targets for 
anticancer treatment  

 Inhibitors  Target integrin 

 Vitaxin-Medi 522  αvβ3 
 Cilengitide-EMD 121974  αvβ3, αvβ5 
 CNTO 95  αv 
 ATN-162  αvβ3, α5β1 
 E7820  α2 subunit 
 VOLOCIXIMAB, EOS-200-4, M200  α5β1 

  Fig. 2.2     VEGF   growth factor and VEGF receptors (Reproduced from Ribatti  2005 )       
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vascular permeability to plasma and plasma proteins with a potency some 50,000 
times that of histamine (Senger et al.  1986 ). In the middle to longer terms (days, 
weeks)  VEGF   induces EC proliferation and survival (Ribatti  2005 ).

    VEGFRs   complexes are specifi c target on tumor endothelium for antibodies 
in vivo. Targeting  VEGF   or its receptors with monoclonal antibodies (such as beva-
cizumab) or small molecule inhibitors of VEGFR tyrosine kinase (such as ZD6476 
and PTK787) has confi rmed the anticancer activity of these agents (Ferrara  2002 ). 
Fusion proteins and chemical conjugates of VEGF and diphtheria toxin or gelonin 
induced tumor regression in mice (Thorpe  2004 ). Retroviruses have been  engineered 
so that they can be coated with an antibody (e.g., anti-VEGFR-2) for the selectively 
delivery of genes to tumor endothelium (Masood et al.  2001 ). 

 The phage display library technique has been successfully used to discover 
tumor cell surface binding peptides. A panel of peptide motifs, including the 
sequences CDCRGDCFC (termed RGD-4C), NGR, CPRECES and GSL, have 
been assembled that target the  tumor blood vessels   (Kolonin et al.  2001 ). 

 ECs of arteries, capillaries, and veins exhibit differential gene expression and 
molecular identities already prior the onset of blood fl ow (Langenkamp and Molema 
 2009 ), indicating the importance of hitherto unidentifi ed microenvironmental factors. 

 Tumor ECs present many gene  expression   abnormalities. St Croix et al. ( 2000 ) 
found that tumor-activated endothelium overexpressed specifi c transcripts as the 
result of qualitative differences in gene profi ling compared with the normal ECs of 
the tissue of origin. A total of 79 transcripts were differentially expressed: 46 were 
elevated at least tenfold and 33 were expressed at substantially lower levels in 
tumor-associated ECs. Ria et al. ( 2009 ) have identifi ed gene differentially expressed 
in multiple myeloma (MM) ECs as compared to monoclonal gammopathy of under-
termined signifi cance (MGUS) ECs. De-regulated genes were mostly involved in 
ECM formation and bone remodeling, cell adhesion, chemotaxis,  angiogenesis  , 
resistance to apoptosis, and cell-cycle regulation (Fig.  2.3 ).

    Tenascin  -C positive human  neuroblastoma   cells transdifferentiate into tumor- 
derived ECs which have been detected both in primary tumors and in tumors formed 
by human  neuroblastoma   cell lines in immunodefi cient mice (Pezzolo et al.  2011 ). 
Tumor-derived ECs targeted with cytotoxic human CD31 monoclonal antibody 
enhance tumor  hypoxia  , which in turn induces  EMT   and endothelial transdifferen-
tiation of tumor cells (Pezzolo et al.  2014 ). 

1     Tumor Basement Membrane 

  The  basement membrane   that envelops ECs and  pericytes   (PCs) of tumor vessels 
may have extra layers that have no apparent association with the cells (Baluk et al. 
 2003 ). It contains distinctive forms of fi bronectin comprising the ED-B domain, 
 laminin   and type IV collagen with exposed cryptic sites (Santamaria et al.  2003 ), 
and proteoglycans that limit the expansion of normal microvessels to about 30 % 
(Chang et al.  2009 ). Fibronectin,  laminin  , collagen I, III, and IV play distinct and 
overlapping roles in  angiogenesis  . 
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 ECM is a source of angiogenic and antiangiogenic molecules. Some of its 
 structural proteins are broken down by enzymes to yield molecules with potent 
actions. Basement membrane degradation results from the increased expression and 
activation of  pericyte   cathepsin proteases, accompanied by decreased expression 
of cysteine protease inhibitors that limit cathepsin activity (Chang et al.  2009 ). 

 Three examples of anti-angiogenic molecules are  endostatin  , which is a COOH- 
terminal fragment of collagen XVIII, tumstatin and arresten, which are the noncol-
lageneous-1 domain of the α3 and the α1 chains of type IV collagen respectively 
(Colorado et al.  2000 ).  Laminin  , which consists of heterodimeric α, β, and γ chains, 
has been implicated in invasion and  metastasis   in various type of cancers (Akimoto 
et al.  2004 ). An anti-laminin peptide inhibits bone metastases of the A375 human 
 melanoma   cells and the MH-95 B-cell  lymphoma   cells (Nakai et al.  1992 ; Michigami 
et al.  1998 ). Basement membrane is also a site of growth factor binding and a par-
ticipant in  angiogenesis    (Kalluri  2003 ).  

2     Tumor Pericytes 

  PCs have  been   characterized by the expression of alpha-smooth actin (α-SMA), 
desmin, CD146,  platelet derived growth factor   receptor beta (PDGFRβ), and nerve/
glial antigen 2 (NG2) proteoglycan (Ribatti et al.  2011 ). 

  Fig. 2.3    Genes differentially expressed in  multiple myeloma   endothelial cells (MMECs) as com-
pared to  endothelial cells   of monoclonal gammopathy of undetermined signifi cance (MGECs) 
(Reproduced from Ribatti and Vacca  2013 )       
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 Birbrair et al. ( 2013 ) identifi ed two PCs subpopulations from large blood vessels 
and capillaries, named type-1 and type-2 PCs.  In vitro  and in vivo assays revealed 
that type-2 (Nestin-GFP + /NG2-DsRed + ), but not type-1 (Nestin-GFP − /NG2- DsRed − ) 
PCs are recruited during tumor  angiogenesis   (Ribeiro and Okamoto  2015 ). In 
tumors, NG2 is a marker of a mature population of PCs (Song et al.  2005 ). Desmin 
positivity represents a more mature population of PCs (Song et al.  2005 ). In tumors, 
desmin-positive PCs appear more closely associated with vessels, whereas αSMA-
positive and PDGFR-β-positive are partially detached (Morikawa et al.  2002 ). 

 PCs may cover 73–92 % of endothelial sprouts in several murine tumor types. 
PCs are located near blood vessels at the growing front of tumors, where  angiogen-
esis   is most active and show morphological abnormalities (Schlingemann et al. 
 1990 ; Wesseling et al.  1995 ; Morikawa et al.  2002 ). Breast and colon tumors recruit 
signifi cantly more PCs than gliomas or renal cell carcinoma (Eberhard et al.  2000 ). 

 PC defi ciency could be partly responsible for vessel abnormalities in  tumor 
blood vessels   (Gerhardt and Semb  2008 ) and partial dissociation of PCs (Hobbs 
et al.  1998 ; Hashizume et al.  2000 ) contribute to increased tumor vascular 
permeability. 

 Severe reduction or lack of PC coverage may disrupt the integrity of the vascula-
ture, enabling tumor cells to transit into the circulatory system, thereby facilitating 
 metastasis  . Genetic disruption of PC coverage elicited increased  metastasis   in the 
Rip1-Tag2 pancreatic islet tumor model (Xian et al.  2006 ). Moreover, the increased 
interstitial pressure compress other tumor vessels, triggering tumor  metastasis   
through a hypoxia-induced  EMT   mechanism (Cooke et al.  2012 ). 

 Tumor PCs are loosely associated with ECs, have abnormal shape, paradoxically 
extend cytoplasmic processes away from the vessel wall, and have extra layers of 
loosely fi tting  basement membrane   (Eberhard et al.  2000 ). Their abnormalities are 
consistent with alterations in  PDGF   signaling pathways. Mice genetically defi cient 
in PDGFB or its receptors have blood vessels with loose PC attachment, irregular 
vessel caliber, luminal projections on ECs, and hemorrhage. Similar abnormalities 
occur in many tumor vessels. PDGFB expressed by tumor cells increases PC recruit-
ment in several in vivo models (Guo et al.  1985 ). Alternatively, genetic abolition of 
PDGFB-R expressed by embryonic PCs decreased their recruitment (Abramsson 
et al.  2003 ). In Lewis lung carcinoma implanted in mice, inhibition of endothelial 
differentiation gene-1 (EDG-1) expression in ECs strongly reduced PC coverage 
(Chae et al.  2004 ). In a human glioma model developed in rat,  angiopoietin  -1 (Ang-
1) led to enhanced PC recruitment and increased tumor growth, presumably by 
favoring  angiogenesis   (Machein et al.  2004 ). Alternatively, in a colon cancer model, 
overexpression of Ang-1 led to smaller tumors with fewer blood vessels and greater 
PC coverage, decreased vascular  permeability and reduced hepatic  metastasis   
(Ahmad et al.  2001 ). 

 In a human  neuroblastoma   xenotransplanted model, PC coverage is halved in 
tumors grafted on  matrix metalloproteinase  -9 (MMP-9)-defi cient mice and trans-
plantation with MMP-9-expressing BM cells restores the formation of mature ves-
sels (Chantrain et al.  2004 ). In addition, overexpression of tissue inhibitor of MMP-3 
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(TIMP-3), results in decreased PC recruitment in  neuroblastoma   and  melanoma   
models (Spurbeck et al.  2002 ). The observation that PCs express MMPs in many 
human tumors in vivo (Nielsen et al.  1997 ) suggests that PC invasion requires 
the proteolytic degradation of  extracellular matrix   by proteases, including MMPs. 

  VEGF   inhibition eliminates tumor vessels without removing PCs (Morikawa 
et al.  2002 ). Anti-angiogenic treatment directed against  ECs   using VEGF inhibitors 
induces the regression of tumor vessels and decreased tumor size (Baluk et al. 
 2005 ), leading to vessel normalization, characterized by increased PC coverage, 
tumor perfusion and chemotherapeutic sensitivity (Jain  2005 ). Moreover, removal 
of VEGF inhibition causes tumor re-growth due to the fact that PCs provide a scaffold 
for the rapidly re-growing of tumor vessels (Mancuso et al.  2006 ). 

 PCs have been indicated as putative targets in the pharmacological therapy of 
tumors by using the synergistic effect of anti-endothelial and anti-pericytic 
molecules (Table  2.2 ). Removal of PC coverage leads to exposed tumor vessels, 
which may explain the enhanced effect of combining inhibitors that target both 
tumor vessels and PCs. Bergers et al. ( 2003 ) showed that combined treatment or 
pre-treatment with anti-PDGF-B/PDGFBR-β reducing PC coverage increases the 
success of anti- VEGF treatment in the mouse RIP1-TAG2 model.

   However, extensive regression of ECs was not observed in tumors after inhibi-
tion of PDGFR-β signaling (Abramsson et al.  2003 ). STI571 (Gleevec, Imatinib), 
which targets PDGFRs and other receptor tyrosine kinases, did not reduce vascular 
density when given alone but did augment the effects of  VEGF   inhibitors (Bergers 
et al.  2003 ). After treatment of RIP1-TAG-2 tumors and Lewis lung carcinomas 
with AG-013737 or VEGF-Trap, surviving PCs may become more tightly associated 
with ECs or have no apparent association with tumor vessels (Inai et al.  2004 ). 
Treatment of RIP1-TAG2 tumors with anti-PDGFR-β antibody for 3 weeks reduces 
PCs, increases EC apoptosis but does not seem to reduce tumor vascular density 
(Song et al.  2005 ). Similarly, the receptor  tyrosine kinase inhibitor   SU6668, which 
also affects PDGFR-β signaling, detaches and reduces PCs in RIP1TAG2 and xeno-
transplanted tumors, thereby restricting tumor growth (Reinmuth et al.  2001 ; 

  Table 2.2     Pericyte   function 
can be targeted by kinase 
inhibitors modulating 
PDGFRβ signaling  

 Sunitinib malate 
 CP-673451 
 Sorafenib tosylate 
 Orantinib (TSU-68) 
 MK-2461 
 Linifanib 
 Axitinib 
 Imatinib 
 Crenolanib 
 Dovitinib 
 Nintendanib 
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Shaheen et al.  2001 ). Sennino et al. ( 2007 ) demonstrated that treatment with a novel 
DNA oligonucleotide aptamer (AX102) that selectively binds PDGF-B led to 
progressive reduction of PCs in Lewis lung carcinomas. Murphy et al. ( 2010 ) 
generated a series of selective type II inhibitors of PDGFR-β and B-RAF targets for 
PC recruitment and endothelial survival, respectively, and demonstrated that dual 
inhibition of both PDGFR-β and B-RAF exerted synergistic anti-angiogenic activity 
in both zebrafi sh and murine models of  angiogenesis  .        
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    Chapter 3   
 Tumor Angiogenesis                     

    Abstract     Tumor angiogenesis may occur through sprouting angiogenesis; 
recruitment of bone marrow-derived endothelial precursors cells (postnatal 
vasculogenesis); vasculogenic mimicry; mosaic vessel formation intussusceptive 
microvascular growth (IMG).  
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          In 1971, Judah Folkman (Fig.  3.1 ) published his classic article in which  he   formu-
lated three bold postulates: (i) angiogenesis is essential for tumor growth beyond 
minimal size; (ii) tumors secrete a “tumor angiogenesis factor” (TAF)    responsible 
for inducing angiogenesis; (iii) anti-angiogenesis is a potential therapeutic strategy 
for treating cancer.

   Within the decade immediately following Folkman’s paper the fi eld of  angiogen-
esis   grew exponentially and over 30 years after Folkman proposed the concept of 
the anti-angiogenic treatment of cancer, the idea fi nally became clinical practice. In 
the meantime, Folkman proposed the concept of the so-called angiogenic switch, 
which could be defi ned as the conversion from a dormant to an activated state 
(Ribatti et al.  2007 ). When this balance is disturbed and pro-angiogenic factors are 
in excess, rapid vascularization and growth of tumors may occur. 

 Tumor  angiogenesis   may occur through several mechanisms: (i)  sprouting angio-
genesis  ; (ii) recruitment of bone marrow-derived EPCs to form new vessels (post-
natal vasculogenesis) (Ribatti  2007 ); (iii)  vasculogenic mimicry   (the 
transdifferentiation of cancer cells allowing them to form tubular structures them-
selves) (Maniotis et al.  1999 ); (iv) mosaic vessel formation (the incorporation of 
cancer cells into the vessel wall or  vascular cooption  ) (Holash et al.  1999 ); (v)  intus-
susceptive microvascular growth (IMG)   (Ribatti and Djonov  2012 ). 
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1     Sprouting Angiogenesis 

   Sprouting angiogenesis   corresponds to the process through which new vessels 
extend from pre-existing vasculature by formation of a vascular sprout. ECs acquire 
the capacity to invade the surrounding tissue by forming an angiogenic sprout 
 composed of a leading tip cell responsive a to angiogenic stimuli and trailing stalk 
cells that function in tube formation which orientate toward the source of the angio-
genic stimulus (Ribatti and Crivellato  2012b ). The progression of  angiogenesis   is 
initiated by local destruction of the  BM   of a vessel and the dissociation of PC from 
the  capillary  , followed by migration of tip cells toward the angiogenic stimulus. 
Over time a lumen is formed and once the sprout anastomoses with another vessel 
sprout, circulation is established. PC and/or smooth muscle cell association and 
 basement membrane   deposition mediate vessel stabilization.   

2     Vascular Co-option 

 Holash et al. ( 1999 ) reported that tumor cells migrate to host organ blood vessels in 
sites of metastases, or in vascularized organs such as the brain, and initiate blood- 
vessel- dependent tumor growth as opposed to classic  angiogenesis  , co-opting and 
growing as cuffs around adjacent vessels. These vessels then regress owing to 
apoptosis of the constituent EC, apparently mediated by Ang-2, resulting in a mas-
sive tumor death. Lastly, at the periphery of the growing tumor mass  angiogenesis   
occurs by cooperative interaction of  VEGF   and Ang-2. Shortly after regression, 

  Fig. 3.1    A portrait of Judah Folkman, a pioner in the study of  angiogenesis   (Reproduced from 
Ribatti ( 2010 )       
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tumor upregulates its expression of VEGF, presumably because it is becoming 
hypoxic due to the loss of vascular support. As in normal vascular remodeling, the 
destabilizing signal provided by Ang-2, which leads to vessel regression in the 
absence of  VEGF  , potentiates the angiogenic response in combination with 
VEGF. Ang-2 induction in host vessels in the periphery of experimental C6 glioma 
precedes  VEGF   upregulation on tumor cells, and causes regression of co-opted 
 vessels (Holash et al.  1999 ). 

 Vajkoczy et al. ( 2002 ) have demonstrated parallel induction of Ang-2 and 
VEGFR-2 in quiescent host ECs, suggesting that their simultaneous expression is 
critical for the induction of  angiogenesis   during vascular initiation of microtumors. 
The  VEGF  /Ang-2 balance may determine whether the new tumor vessels continue 
to expand when the ratio of  VEGF   to Ang-2 is high, or regress when it is low during 
their remodeling. 

 Vascular co-option is more frequently observed in cancer of densely vascularized 
organs, including brain, lung, liver, where the primary tumor cells co-opt the 
 adjacent quiescent blood vessels of the host tissue.  

3     Vasculogenic Mimicry 

  Maniotis et al. ( 1999 ) described a new model of formation  of   vascular channels by 
human  melanoma   cells and called it “vasculogenic mimicry” to emphasize the  de 
novo  generation of blood vessels without the participation of ECs and independent 
of  angiogenesis  . Microarray gene chip analysis of a highly aggressive compared 
with poorly aggressive human cutaneous  melanoma   cell lines revealed a signifi cant 
increase in the expression of  laminin   5 and MMP-1, MMP-2, MMP-9 and mem-
brane type 1 (MT1)-MMP in the highly aggressive cells (Seftor et al.  2001 ), sug-
gesting that increased expression of MMP-2 and MT1-MMP along with matrix 
deposition of  laminin   5 are required for their mimicry. Another possibility is that the 
EC lining is replaced by tumor cells, resulting in “mosaic” vessels whose lumen is 
formed of both endothelial and tumor cells. Chang et al. (2000) used CD31 and 
CD105 to identify ECs and endogenous green fl uorescent protein (GFP) labeling of 
tumor cells, and showed that approximately 15 % of perfused vessels of a colon 
carcinoma xenografted were mosaic, with focal regions where no CD31/CD105 
immunoreactivity was detected and tumor cells were in contact with the vessel 
lumen. 

 We have demonstrated by using the  chorioallantoic membrane (CAM)   assay that 
the capability of B16-F10 melanoma cells to contribute to the new formation of host 
blood vessels through a vasculogenic mimicry mode Ribatti et al.  2013 ). Results 
have shown that B16-F10 melanoma cells are able to form in 4 days macroscopic 
tumor masses and induce a strong angiogenic response comparable to that of a well-
known angiogenic cytokine, namely FGF-2. Moreover, tumor cells are able to cross 
the chorionic epithelium, and to move beneath in the mesenchyme to form tumor 
masses immunoreactive to specifi c antibodies anti-S100 and anti- MART-1/
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Melan-A. Finally, we have shown that  CAMs   new-formed blood vessels are lined by 
both pigmented  melanoma   cells and cells immunoreactive to MART-1/Melan-A and 
PAS, suggesting the occurrence of a vasculogenic mimicry process (Fig.  3.2 ).   

4     Intussusceptive Microvascular Growth 

   IMG   generates vessels more rapidly with a less metabolic demand as compared to 
 sprouting angiogenesis   and is a putative strategy that tumors can use for rapid 
adaptation to milieu changes. In fact, no EC proliferation is required for IMG and 
ECs only increase their volume and become thinner (Fig.  3.3 ). IMG occurs in 
several tumors, including colon and  mammary carcinomas  ,  melanoma  , B-cell non 
Hodgkin’s  lymphoma  , and glioma (Patan et al.  1996 ; Djonov et al.  2001 ; Crivellato 
et al.  2003 ; Ribatti et al.  2005a ; Nico et al.  2010 ). Patan et al. ( 1996 ) observed the 
growth of human colon adenocarcinoma  in vivo  and demonstrated that IMG is a 
mechanism in tumor  angiogenesis  , suggesting that the rapid vascular remodeling 
caused by IMG contributes to intermittent blood fl ow in tumors. Djonov et al. 
( 2001 ) showed that in mammary tumors of neuT transgenic mice, both sprouting 
and IMG occur simultaneously in the same nodule. Crivellato et al. ( 2003 ) (Fig.  3.4 ) 
demonstrated that in B-cell non-Hodgkin’s  lymphomas  , large vessels developed 
transluminal bridges leading to the division of the parental vessels into two or more 
parts. Moreover, different morphological structural changes in term of expression of 
IMG have been identifi ed: pillar formation by folding of the lateral vascular wall, 
fusion of pillars and connection of intraluminal tissue folds with the opposite 
vascular wall, leading to the splitting of the original vascular structure into newly 
formed blood vessels (Crivellato et al.  2003 ). Ribatti et al. ( 2005a ) and Nico et al. 
( 2010 ) confi rmed the presence of tumor vessels with connections of intraluminal 
tissue folds with the opposite vascular wall in human  melanoma   and, respectively, 
human glioma (Figs.  3.5  and  3.6 ).

       Paku et al. ( 2011 ) by using electron and confocal microscopy, observed intralu-
minal nascent pillars that contain a collagen bundle covered by ECs and proposed a 
new mechanism for the development of pillars consisting of four steps: (i) formation 
of intraluminal endothelial bridges; (ii) on the abluminal side of the ECs that form 
the bridge the  basement membrane   is locally disrupted by proteolytic activity; (iii) 
an EC from the bridge adheres to a nearly collagen bundle which is transferred 
through the lumen, reaches the other side of the lumen, and is transferred into the 
connective tissue on the other side of the vessel; (iv) further pillar maturation occur 
through the immigration of  fi broblasts  /myofi broblasts and PCs into the pillar and 
subsequent ECM proteins (collagen and fi brin) deposition by these cells. 

 After initial tumor regression in response to an anti-angiogenic treatment, tumor 
may re-grow. The adaptive mechanisms by which tumor re-grow following 
 development of resistance to anti-angiogenic drugs targeting mostly  VEGF  , include: 
(i) activation and/or up-regulation of alternative pro-angiogenic signaling pathways; 
(ii) recruitment of pro-angiogenic cells, including EPCs and bone marrow-derived 
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  Fig. 3.2    Macroscopic pictures of  CAMs   at day 12 of incubation, showing silicon rings containing 
B16F10  melanoma   cells suspensions. The cells give rise to distinct appreciable pigmented tumor 
masses inside ( a ) the silicon rings and are surrounded by numerous allantoic vessels. Few blood 
vessels are recognizable around a silicon ring treated with vehicle alone ( b ). In ( c ) and ( d ) microscopic 
pictures of  CAMs   at day 12 of incubation showing that B16F10 melanoma cells are densely 
packed inside the  CAM   mesenchyme are easily distinguishable as brown pigmented tumor masses 
( c ) or reactive to anti-S100 specifi c antibody ( d ). In ( e ) and ( f ) microscopic pictures of CAMs at 
day 12 of incubation showing the morphological features of CAMs’ blood vessels. They are lined 
by chick’s  endothelial cells   ( e ), or  melanoma   cells showing a characteristic cytoplasmic immuno-
reactivity to the specifi c antibody anti-MART-1/Melan-A ( f ) or are positive to both MART-1/
Melan-A/PAS ( f , inset) (Reproduced from Ribatti et al. ( 2013 ))       
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cells; (iii) increased  pericyte   coverage of the tumor vasculature to attenuate the 
necessity for VEGF-mediated survival signaling; (iv) activation and enhancement 
of invasion and  metastasis  ; (v) activation of alternative mechanisms to form blood 
vessels, including IMG, co-option, and  vasculogenic mimicry  . 

 A switch from sprouting to intussusceptive  angiogenesis   might represent an 
adaptive response to treatment with various antitumor and anti-angiogenic com-
pounds to restore the hemodynamic and structural properties of the vasculature 
enhancing tumor drug delivery and sensitivity to treatments. 

 In a  hepatocellular carcinoma   experimental model treated with  sirolimus  , a 
mTOR inhibitor, during the treatment and the early recovery phase vascular sprouting 
was absent, whereas  IMG   was observed (Semela et al.  2007 ). Whereas the  capillary   
plexus expanded primarily by sprouting in the controls, this mechanism was nearly 
absent in the tumors of treated animals and replaced by intussusception (Semela 
et al.  2007 ). 

 Radiotherapy of  mammary carcinoma   allografts or treatment with an inhibitor of 
 VEGF   tyrosine kinase (PTK787/ZK222854) results in transient reduction in tumor 
growth rate with decreased tumor vascularization followed by post-therapy relapse 
with extensive  IMG  , characterized by a plexus composed of enlarged sinusoidal- 
like vessels containing multiple transluminal tissue pillars, a dramatic decrease in 
the intratumoral microvascular density, probably as a result of intussusceptive 
 pruning associated to a minimal reduction of the total microvascular exchange area 
(Hlushchuk et al.  2008 ). Moreover, the switch to IMG improves the perfusion of the 

  Fig. 3.3    3D ( a  –  d ) and 2D ( a′–d′ ) scheme depicting the generation of transluminarly pillar by 
intussusceptive  angiogenesis  . Simultaneously protrusion of opposing  capillary   walls into the ves-
sel lumen ( a ,  b ;  a′ ,  b′ ) results in creation of interendothelial contact zone ( c ;  c′  ). In a subsequent 
step the endothelial bilayer becomes perforated and the newly formed pillar core got invaded by 
 fi broblasts   ( fb ) and  pericytes   ( Pr ), which lay down collagen fi brils ( Co  in  d′ ) (Reproduced from 
Ribatti and Djonov ( 2012 ))       
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  Fig. 3.4    Ultrastructural 
fi ndings of human 
non-Hodgkin’s lymphoma 
specimen. Transluminal 
bridges leading to the 
parental vessel in two or 
more parts are appreciable 
(Reproduced from 
Crivellato et al. ( 2003 ))       

  Fig. 3.5    Two examples of tumor vessels with a high and low number of intraluminal tissue folds 
with the opposite vascular wall, expression of  intussusceptive microvascular growth   in human 
primary  melanoma   tumor specimens (Reproduced from Ribatti et al. ( 2005a ))       
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tumor mass as has been shown by an improvement in oxygen supply of the tumor 
mass (Hlushchuk et al.  2008 ). 

 Tumor recovery after treatment with inhibitors of  VEGFR   signaling in the RIP- 
Tag 2 and Lewis lung carcinoma models was associated with rapid revascularization 
and evidence of  IMG   (Mancuso et al.  2006 ). Similar changes in vasculature have 
been observed in a murine renal cell carcinoma study (Drevs et al.  2002 ), in murine 
orthotopic B16/BL6  melanoma   tumor model after treatment with either PTK/ZK 
(Rudin et al.  2005 ) or other  tyrosine kinase inhibitors   (Nakamura et al.  2004 ,  2006 ; 
Ruggeri et al.  2003 ). Wnuk et al. ( 2011 ) demonstrated that restoration of glomerular 
 capillary   structure after induction of Thy1.1 nephritis occurred by intussusceptive 
 angiogenesis   and this in spite of the VEGFR-2 and PDGFRβ inhibition. The results 
provide an important insight into  IMG   control mechanisms and indicate differential 
molecular regulation between sprouting and intussusceptive angiogenesis    .        

  Fig. 3.6    Two examples of tumor vessels with a high and low number of intraluminal tissue folds 
with the opposite vascular wall, expression of  intussusceptive microvascular growth   in human 
glioma tumor specimens (Reproduced from Nico et al. ( 2010 ))       
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    Chapter 4   
 Infl ammatory Cells in Tumor 
Microenvironment                     

    Abstract     Both innate and adaptive immune cells are involved in the mechanisms 
of tumor endothelial cell proliferation, migration and activation, through the 
 production and release of a large spectrum of pro-angiogenic mediators, which cre-
ate the specifi c microenvironment that favours tumor angiogenesis. Cancer stem 
cells have been identifi ed in several human solid and hematological tumors and able 
to initiate tumor formation and metastasis. Cancer stem cells are more resistant to 
chemotherapeutic agents and radiation therapy than more mature cell types from the 
same tissue.  

  Keywords     Cancer stem cells   •   Chromosomal genetic instability   •   Eosinophils   • 
  Dendritic cells   •   Fibroblasts   •   Granulocyte-colony stimulating factor   •   Granulocyte 
macrophage-colony stimulating factor   •   Infl ammation   •   Interleukins   •   Lymphocytes   
•   Macrophages   •   Mast cells   •   Multipotent adult progenitor cells   •   Myeloid-derived 
suppressor cells   •   Neutrophils   •   Osteoblasts   •   Osteoclasts   •   Platelets   •   Tie-2 expressing 
monocytes  

          Tumor cells  undergo   a Darwinian selection and are able to survive and enter into an 
equilibrium state in which the innate and adaptive immune system control the tumor 
(Dunn et al.  2002 ; Schreiber et al.  2011 ). Some tumor cells acquire mutations, 
 chromosome amplifi cations and deletions, and epigenetic modifi cations, resulting 
in gene silencing or synthesis of abnormal proteins. Overall, these events allow 
tumor cells to escape the control of the immune system, proliferate and give rise to 
a clinically detectable tumor. 

 The historical observations by Paul Ehrlich (Fig.  4.1 ) that tumor cells are recog-
nized and eliminated by the immune cells evolved in the theory of innate immune 
surveillance, proposed by Sir Marcfarlane Burnet (Fig.  4.2 ) in 1970. In this context, 
the immune system spontaneously identifi es and eliminates cancer cells. Accordingly 
to the concept of immunoediting tumor cells that are vulnerable to attack by the 
immune system are cleared, whereas cells that have a capacity to circumvent immu-
nosurveillance can survive. Immunodefi cient mice are more prone to the  development 
of spontaneous tumors, and carcinogen-induced sarcoma developed better in a host 
devoid of immunity (Shankaran et al.  2001 ).

    The link between chronic  infl ammation   and tumorigenesis was fi rst proposed by 
Rudolf Virchow (Fig.  4.3 ) in 1863 after the observation that infi ltrating leukocytes 
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  Fig. 4.1    A port trait of 
Paul Ehrlich (Reproduced 
from Ribatti ( 2010 ))       

  Fig. 4.2    A port trait of Sir 
Frank Macfarlane Burnet 
(Reproduced from Ribatti 
(2009))       
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are a hallmark of tumors and fi rst established a causative connection between the 
lymphoreticular infi ltrate at sites of chronic  infl ammation   and the development of 
cancer (Balkwill and Mantovani  2002 ). Surgeons have long described the tendency 
of tumors to recur in healing resection margin and it has been reported that wound 
healing environment provides an opportunistic matrix for tumor growth 
(Abramovitch et al.  1998 ; Wong and Reiter  2011 ). Tumors were described by 
Dvorak as wounds that never heal (Fig.  4.4 ) (Dvorak  1986 ).

    Population-based studies have shown that individuals who are prone to chronic 
 infl ammation   disorders have an increased risk of cancer development (Table  4.1 ) 
(Balkwill et al.  2005 ). A meta analysis found that in ~15 % of cancers, tumor 
 initiation can be attributed to infection by viruses, bacteria, and parasites (de Martel 
et al.  2012 ).

    Chromosomal genetic instability   in susceptible cell population can be induced 
by different factors such as reactive oxygen species released from infl ammatory 
cells causing accelerated accumulation of genetic and epigenetic alterations that 
affect the expression or function of proto-oncogenes and tumor suppressor genes in 
somatic cells (Coussens and Werb  2002 ). 

 Treatment with non steroidal anti-infl ammatory agents decreases the incidence 
and mortality of several tumor types and low dose aspirin could reduce the relative 
risk of cancer mortality (Koehne and Dubois  2004 ). Moreover, there is a strong 
evidence linking carcinogenesis to infl ammatory response and reactive oxygen and 
nitrogen species, and  therapeutic strategies   for cancer prevention using free radicals 
and pro-infl ammatory signaling inhibitors have been evaluated in animal models 
(Rao et al.  2002 ). 

  Fig. 4.3    A port trait of 
Rudolf Virchow 
(Reproduced from   http://
wilkipedia.org    )       
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  Fig. 4.4    A port trait of 
Harold Dvorak 
(Reproduced from Ribatti 
(2010))       

  Table 4.1    Different types of 
cancers are associated with 
chronic infl ammatory 
disorders  

 Colorectal cancer, ulcerative colitis 
and Chron’s disease 
 Cholangiocarcinoma, primary sclerosing 
cholangitis 
 Gastric cancer, chronic gastritis 
( Helicobacter pylori ) 
 Lung cancer,  infl ammation   caused by 
asbestsos, smoking, and sylica 
 Prostate cancer,  Escherichia coli  
infection of prostate 
  Hepatocellular carcinoma  , infection 
caused by hepatitis virus B and virus C 
  Melanoma  , UV irradiation and 
associated skin  infl ammation   
 Endometrial carcinoma, endometriosis 
 Gallbladder carcinoma, gallbladder 
stone-associated chronic cholecystitis 
 Esophageal cancer, Barrett’s 
esophagitis 

 The transition from a pre-malignant lesion to cancer is characterized by a shift of 
an immune context formed by Th1, Th17, T effector cells and M1 macrophages to 
a microenvironment where Th2 cells, Tregs, M2 macrophages and  MDSCs   are 
prevalent. 
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 Under a variety of infl ammatory conditions, both innate and adaptive immune 
cells are capable of polarization into their “tumoricidal” (growth arresting) or 
“tumorigenic” (growth promoting) forms. 

1     Neutrophils 

   Neutrophils   are the source of several cytokines, including TNF-α, inteleukin (IL-1β, 
IL-12),  VEGF  , and chemokines, after including change in chemokine (C-X-C motif) 
ligand (CXCL-1, 8,10), chemokine (C-C motif) ligand (CCL-3, 4), involved in 
 angiogenesis   (Scapini et al.  2000 ). 

 In breast cancer, release by tumor neutrophils of oncostatin M induce VEGF 
production from cancer cells (Queen et al.  2005 ). Expression of human papilloma 
virus (HPV) 16 in transgenic mice induces a multi-stage transformation of basal 
keratinocytes to squamous carcinoma, infi ltration of neutrophils and  mast cells  , 
activated to secrete MMP-9, and angiogenic switch (Coussens and Werb  1996 ). In 
another experimental model of pancreatic carcinogenesis, Rip-Tag2, neutrophils 
express MMP-9 and their depletion reduced the angiogenic switch of premalignant 
lesions (Nozawa et al.  2006 ). Moreover, in knock-out mice for MMP-2 and MMP-9, 
the absence of both MMP-9-positive neutrophils and MMP-2-expressing-stromal 
cells resulted in the absence of tumor vascularization and invasion (Masson et al. 
 2005 ). Deryugina et al. ( 2014 ) demonstrated that tumor associated neutrophils are 
the major source of MMP-9 in the  tumor microenvironment   (Deryugina et al.  2014 ). 

 Expression of the hematopoietic cytokines  granulocyte-colony stimulating factor 
(G-CSF)   and/or  granulocyte macrophage-colony stimulating factor (GM-CSF)   was 
associated with neutrophil recruitment and  angiogenesis   in malignant HaCaT tumor 
cells (Obermueller et al.  2004 ; Gutschalk et al.  2006 ).   

2     Eosinophils and Dendritic Cells 

  Eosinophils      produce a variety of pro-angiogenic factors, including  VEGF  , CCL-11, 
fi broblast growth factor-2 (FGF-2), CXCL-8,  GM-CSF  ,  PDGF  , TGF-β, and MMP-9 
(Puxeddu et al.  2005 ; Salcedo et al.  2001 ; Munitz and Levi-Schaffer  2004 ; Ohno et al. 
 1997 ). Using in vitro and in vivo models, such as aorta ring and  CAM   assay, eosino-
phils induce angiogenesis (Puxeddu et al.  2005 ; Salcedo et al.  2001 ). 

 Dendritic cells may contribute to  angiogenesis   by secretion of pro-angiogenic 
factors (Table  4.2 ) or transdifferentiation into endothelial like cells. Riboldi et al. 
( 2005 ) demonstrated that alternatively activated dendritic cells produce  VEGF  . 
Incubation of dendritic cells with VEGF and oncostatin M led to their  transdifferentation 
into endothelial-like cells, expressing factor VIII-related antigen, VE-cadherin, and 
forming vascular-like tubes on Matrigel (Gottfried et al.  2007 ). Dendritic cells 
differentiated in the presence of adenosine express higher levels of  VEGF  , IL-6, 
IL-8, TGF-β, thus sustaining tumor  angiogenesis   (Novitiskiy et al.  2008 ).  VEGF  , 

2 Eosinophils and Dendritic Cells



32

IL-6, and TGF-β contribute to reduction of mature dendritic cells and accumulation 
of immature tolerant dendritic cells and polarization of dendritic cells toward Th2 
or Treg induction, expression of activation of immunosuppressive mechanisms 
(Shurin et al.  2013 ).

   TNF-α and CXCL-8 produced by immature dendritic cells in ovarian cancer 
ascites promote  angiogenesis   in vivo (Curiel et al.  2004 ) and OPN released from 
immature dendritic cells acts as a trigger for the production of the pro-angiogenic 
factor IL-1β from monocytes (Naldini et al.  2006 ). A population of CD45 +  CD11 +  
MHC-II +  dendritic cells infi ltrating human ovarian carcinoma and expressing 
VE-cadherin, assemble into vascular tubes following implantation of tumor-derived 
CD-45 + -VE-cadherin +  cells in immunodefi cient mice (Cornejo-Garcia et al.  2004 ).  

3     Lymphocytes and Platelets 

   T cell  infi ltration      has been correlated with improved prognosis in colorectal cancer, 
breast cancer, renal cell carcinoma,  melanoma  , ovarian and gastrointestinal stroma 
tumors (GIST) (Gajewski et al.  2013 ). Th1 –cytotoxic cells may prevent tumors 
from growing locally (Fridman et al.  2012 ). 

 In ovarian cancer, CD4/CD25-positive Tregs secrete higher amounts of VEGF-A 
and promote EC proliferation in vitro and in vivo (Facciabene et al.  2011 ). During 
interaction with  dendritic cells  , activated CD4-positive T cells can acquire neuropi-
lin- 1, a co-receptor that bind  VEGF   from dendritic cells. The resulting neuropilin1- 
positive T cells bind dendritic cell-secreted VEGF-A and could behave as 
VEGF-carrying cells, promoting  angiogenesis   (Bourbie-Vaudanic et al.  2006 ). 

  Table 4.2    Pro-angiogenic 
and anti-angiogenic 
molecules secreted by 
 dendritic cells    

  Pro-angiogenic  
  Vascular endothelial growth factor 
(VEGF)   
 Interleukin-6 (IL-6) 
 Interleukin-8 (IL-8) 
 Transforming growth factor beta 
(TGF-β) 
 Tumor necrosis factor alpha (TNF-α) 
 CXCL-1, -2, -3, -5, -8 
 Osteopontin 
  Anti-angiogenic  
 IL-12 
 CXCL-9, 10 
 Interferon alpha (IFN-α) 
 Thrombospondin-1 (TSP-1) 
 Long pentraxin-3 (PTX-3) 
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 Several studies have shown that tumor infi ltrating NK (TINK) and tumor- 
associated NK (TANK) are compromised in their ability to lyse tumor cells; they are 
potentially pro-tumorigenic and can also acquire a pro-angiogenic phenotyoe 
(Bruno et al.  2014 ). Decidual NK cells are able to release angiogenic factors, including 
 VEGF  , PlGF, and IL-8, necessary for spiral artery formation during decidualization 
(Vacca et al.  2011 ). Tumor infi ltrating NK cells in non small cell lung cancer 
(NSCLC) produce elevated levels of VEGF, PlGF, IL-8, and induce ex vivo ECs 
chemotaxis and tube formation (Bruno et al.  2013 ). 

 IL-12 receptors are expressed by NK and T cells (Trinchieri  1993 ). IL-12 sup-
presses  angiogenesis   through NK-mediated cytotoxicity of ECs (Yao et al.  1999 ) and 
IL-12-activated lymphocytes exert an anti-angogenic activity through the release of 
interferon gamma (IFN-γ) and down-modulation of  VEGF   (Cavallo et al.  2001 ). 

 Tumor cells express tissue factor on their plasma membranes which, in turn, pro-
vide a surface for pro-thrombinase activation; thus, intravascular clotting tumor cells 
provide the functions played by platelets in intravascular clotting (Dvorak et al. 
 1983 ). Moreover, tumor cells shed portions of their plasma membranes in the form 
of vesiscles (exosomes), which possess pro-coagulant activity (Dvorak et al.  1983 ). 

 Platelets contain a whole range of pro- and anti-angiogenic compounds, which 
are endocytosed and sequestered in different populations of alpha granules and 
accumulation of platelets in some tumors and release of angiogenic molecules could 
further stimulate tumor growth (Klement et al.  2009 )  .  

4     Mast Cells 

  Although  some   evidence suggest that mast cells can promote tumorigenesis and 
tumor progression, there are some clinical data as well as experimental tumor mod-
els in which mast cells seems to have functions that favor the host (Ribatti and 
Crivellato  2009 ). Mast cells attracted in the  tumor microenvironment   by stem cell 
factor (SCF) secreted by tumor cells, produce several angiogenic factors as well as 
MMPs, which promote tumor vascularization and invasiveness, respectively (Ribatti 
and Crivellato  2009 ). Mast cells are a major source of histamine, which modulate 
tumor growth through H1 and H2 receptors (Fitzsimons et al.  2007 ). H1 receptor 
antagonists signifi cantly improved overall survival rates and suppressed tumor 
growth as well as the infi ltration of mast cells and  VEGF   levels through the inhibition 
of HIF-1α expression in B16F10 melanoma-bearing mice (Jeong et al.  2013 ). 

 Mast cells exert immunosuppression releasing TNF-α and IL-10, which are 
essential in promoting the immune tolerance mediated by Treg cells, and stimulate 
immune tolerance and tumor promotion (Ullrich et al.  2007 ; Grimbaldesnton et al. 
 2007 ). Mast cells may promote  infl ammation  , inhibition of tumor cell growth, and 
tumor cell apoptosis by releasing cytokines, such as  interleukin   IL-1, IL-4, IL-6, IL-8, 
monocyte chemotactic protein-3 and -4 (MCP-3 and MCP-4), TGF-β, and chymase. 
Chondrotin sulphate may inhibit tumor cells diffusion and tryptase causes both 
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tumor cell disruption and  infl ammation   through  activation of protease-activated 
receptors (PAR-1 and -2) (Ribatti and Crivellato  2012a ). 

 Within the developing tumor environment, mast cells do not act alone. They are 
recruited early in tumor development and play a critical role in both  angiogenesis   
and tissue remodeling. As tumor growth progresses, mast cells recruit  eosinophils   
and  neutrophils   and activate T and B cell immune responses (Kinet  2007 ). Data on 
mast cells and  metastasis   have been scant and poor. Yano et al. ( 1999 ) reported that 
mast cell infi ltration around gastric cancer cells correlated with tumor  angiogenesis   
and metastasis. 

 Increased mast cell number has been correlated with a poor prognosis in several 
human tumors, including  melanoma   (Fig.  4.5 ) (Ribatti et al.  2003a ), oral squamous 
carcinoma (Wanachantatak  2003 ), and squamous cell carcinoma of the lip (Rojas 
et al.  2005 ).

  Fig. 4.5    Histological sections of human advanced primary  melanomas   stained with Factor VIII 
for microvessels ( a, b ) and with tryptase for  mast cells   ( c, d ) from patients with good ( a, c ) and 
poor prognosis ( b, d ) subgroup. Note the higher density of microvessels ( arrowheads ) and of mast 
cells ( red stained ) in poor prognosis patient (Reproduced from Ribatti et al. ( 2003a ))       
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   Mast cells produce several pro-angiogenic factors, including FGF-2, VEGF, 
IL-8, TNF-α, TGF-β, and nerve growth factor (NGF) (Qu et al.  1995 ,  1998a ,  b ; 
Grützkau et al.  1998 ; Abdel-Majid and Marshall  2004 ; Boesiger et al.  1998 ; Kanbe 
et al.  2000 ; Moller et al.  1993 ; Walsh et al.  1991 ; Nilsson et al.  1997 ), migrate 
in vivo and in vitro in response to  VEGF   and placental growth factor-1 (PlGF- 1  ) 
(Detmar et al.  1998 ; Gruber et al.  1995 ; Detoraki et al.  2009 ). Human lung mast 
cells express VEGF-A, VEGF-B, VEGF-C and VEGF-D, and supernatants of prosta-
glandin E2 (PGE2)- and 5′-N-methyl carboxamide adenosine (NECA)-activated 
lung mast cells induced angiogenic response in the chick embryo  chorioallantoic 
membrane (CAM)   assay that was inhibited by an anti-VEGF-A antibody (Detoraki 
et al.  2009 ). Granulated murine mast cells and their granules are able to stimulate an 
intense angiogenic reaction in the CAM assay, partly inhibited by anti-FGF-2 and 
-VEGF antibodies (Fig.  4.6 ) (Ribatti et al.  2001 ). Intraperitoneal injection of the 
degranulating compound 48/80 causes a vigorous angiogenic response in the rat 
mesentery window angiogenic assay and in mice (Norrby et al.  1986 ,  1989 ). 
Histamine and heparin stimulate proliferation of  endothelial cells   in vitro and are 
angiogenic in the  CAM   assay (Sörbo et al.  1994 ; Ribatti et al.  1987 ).

   Mast cells store in their secretory granules pre-formed active serine proteases, 
including tryptase and chymase (Metcalfe et al.  1997 ). Tryptase stimulates the pro-
liferation of ECs, promotes vascular tube formation in vitro, degrades connective 
tissue matrix, and activates matrix MMPs and plasminogen activator (PA), which in 
turn degrade the  extracellular matrix   with consequent release of  VEGF   or FGF-2 
from their matrix-bound state (Blair et al.  1997 ). The expression of mast cell 
chymase and tryptase correlated with mast cell maturation and  angiogenesis   during 
tumor progression in chemically induced tumor growth in BALB/c mouse (de 
Souza et al.  2012 ). Mast cells contain MMPs, and TIMPs, (Tanaka et al.  2001 ; 
Koskivirta et al.  2006 ) which intervene in regulation of  ECM   degradation, allowing 
release of angiogenic factors. 

  Fig. 4.6    A  mast cell   suspension has been delivered on the top of the chick embryo  chorioallantoic 
membrane  . Macroscopic observation shows the sponge surrounded by numerous allantoic vessels 
that develop radially towards the implant in a ‘spoked-wheel’ pattern. The histological analysis 
shows among the sponge trabeculae metachromatic  mast cells   and their secretory granules 
(Reproduced from Ribatti et al. ( 2001 ))       
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 Mast cell-defi cient W/Wv mice exhibit a decreased rate of tumor  angiogenesis   
(Starkey et al.  1988 ). Development of squamous cell carcinoma in a human papil-
loma virus (HPV) 16 infected transgenic mouse model of epithelial carcinogenesis 
provided experimental support for the early participation of mast cells in tumor 
growth and  angiogenesis   (Coussens et al.  1999 ,  2000 ). Mast cells infi ltrated hyper-
plasia, dysplasias, and the invasive front of carcinomas, but not the core of tumors. 
Accumulation occurred proximal to developing capillaries and the stroma surrounding 
the advancing tumor mass (Coussens et al.  1999 ). Infi ltration of mast cells and 
 activation of MMP-9 coincided with the angiogenic switch in premalignant lesions 
through the release of pro-angiogenic molecules from the ECM. Remarkably, 
premalignant  angiogenesis   was abrogated in a mast cell-defi cient HPV 16 transgenic 
mouse indicating that neoplastic progression in this model involved infi ltration of 
mast cells in the skin (Coussens et al.  1999 ,  2000 ). By using the same in vivo trans-
genic mouse model, it has been demonstrated that genetic elimination of mature T 
and B  lymphocytes  , limits neoplastic progression (de Visser et al.  2005 ; Andreu 
et al.  2010 ). Moreover, in prostate tumors derived from both tumor transgenic 
 adenocarcinoma of the mouse prostate (TRAMP) mice and human patients, mast 
cells promote well-differentiated adenocarcinoma growth (Pittoni et al.  2011 ). 

 An increased number of mast cells have been demonstrated in  angiogenesis   asso-
ciated with vascular tumors, like haemangioma and haemangioblastoma (Glowacki 
and Mulliken  1982 ), as well as a number of haematological and solid tumors, includ-
ing  lymphomas   (Ribatti et al.  1998 ; Fukushima et al.  2001 ),  multiple   myeloma 
(Ribatti et al.  1999 ) myelodysplastic syndrome (Ribatti et al.  2002 ), B-cell chronic 
lymphocytic leukemia (Molica et al.  2003 ; Ribatti et al.  2003b ), breast cancer 
(Hartveit  1981 ; Bowrey et al.  2000 ), colon-rectal cancer (Lachter et al.  1995 ), uterine 
cervix cancer (Graham and Graham  1996 ; Benitez-Bribiesca et al.  2001 ; Ribatti 
et al.  2005a ), melanoma (Dvorak et al.  1980 ; Reed et al.  1996 ; Ribatti et al.  2003a ), 
and  pulmonary   adenocarcinoma (Ullah et al.  2012 ), in which mast cell accumulation 
correlate with increased neovascularization, mast cell  VEGF   and FGF-2 expression, 
tumor aggressiveness and poor prognosis (Tóth-Jakatics et al.  2000 ; Ribatti et al. 
 2003a ). Indeed, a prognostic signifi cance has been attributed to mast cells and micro-
vascular density also in squamous cell cancer of the esophagus (Elpek et al.  2001 ). 
An association of  VEGF   and mast cells with  angiogenesis   has been demonstrated in 
laryngeal carcinoma and in small lung carcinoma (Sawatsubashi et al.  2000 ; Imada 
et al.  2000 ; Takanami et al.  2000 ; Tomita et al.  2000 ).   

5     Macrophages 

  Cells  belonging   to the monocyte-macrophage lineage are a major component of the 
leucocyte infi ltration in tumors (Balkwill and Mantovani  2002 ). Tumor-derived 
chemo attractants ensures macrophage recruitment, including colony stimulating 
factor-1 (CSF-1), the CC chemokines CCL-2, CCL-3, CCL-4, CCL-5 and CCL-8, 
and  VEGF   secreted by both tumor and stromal elements (Mantovani et al.  2002 ). 
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Activated macrophages are generally categorized in two types, M1 (classically acti-
vated) and M2 (alternatively activated) (Balkwill and Mantovani  2002 ). M1 macro-
phages are able to kill microorganisms as well as tumor cells and secrete high levels 
of pro-infl ammatory cytokines and tumoricidal agents (TNF-α and IL-12), reactive 
nitrogen and oxygen intermediates (RNI, ROI) (Balkwill and Mantovani  2002 ). In 
the  tumor microenvironment  , TAMs are mainly constituted by M2 elements 
(Mantovani et al.  2002 ), which have poor attitude to destroy tumor cells but are bet-
ter adapted to promoting  angiogenesis  , repairing and remodeling wounded or dam-
aged tissues, and suppressing adaptive immunity (Sica et al.  2006 ). In regressing 
and non- progressing tumors, TAMs mainly resemble the M1 type and exhibit anti-
tumor activity, while in malignant and advanced tumors, TAMs are biased toward 
the M2 phenotype that favors tumor malignancy (Qian and Pollard  2010 ). Unique 
cell surface markers that distinguish the two TAM phenotypes remain elusive and 
expression of M1/M-2 associated molecules is highly dependent on tumor type, 
tumor stage, intratumoral localization,  hypoxia  , and other microenvironmental sig-
nals (Mantovani et al.  2002 ). The phenotype of polarized M1-M2 macrophages has 
the potential to be reversed (Guiducci et al.  2005 ). Rolny et al. ( 2011 ) demonstrated 
that the host-produced histidine-rich glycoprotein (HRG) skewed TAM polarization 
away from the M2 to a tumor-inhibiting M1-like phenotype. In this context, HRG 
promoted antitumor immune responses and vessel normalization. Extensive TAM 
infi ltration correlates with a poor prognosis for breast, prostate, cervix, and bladder 
cancer patients (Talmadge et al.  2007 ). 

 TAMs produce several pro-angiogenic cytokines, including  VEGF  , TNF-α, IL-8 
and FGF-2 as well as  extracellular matrix  -degrading enzymes, including MMP-2, -7, 
-9, -12, and cycloxygenase-2 (COX-2) (Naldini and Carraro  2005 ; Klimp et al.  2001 ). 

 In an experimental model of subcutaneous  melanoma  , both  angiogenesis   and 
growth rate correlate with tumor infi ltration by macrophages expressing angiotensin 
I receptor and  VEGF   (Egami et al.  2003 ). Lewis lung carcinoma cells expressing 
IL-1-β develop neovasculature with macrophage infi ltration and enhance tumor 
growth in wild-type but not in MCP-1-defi cient mice, suggesting that macrophage 
involvement might be a prerequisite for neovascularization and tumor progression 
(Nakao et al.  2005 ). In a murine model of  mammary carcinoma  , defi ciency of mac-
rophage colony-stimulating factor (M-CSF), a inductor of macrophage recruitment 
in tumor tissues, reduces progression to invasive carcinoma and  metastasis   (Lin 
et al.  2001 ). In polyoma middle-T (PyMT)-induced mouse mammary tumors, accu-
mulation of macrophages in pre-malignant lesions precedes the angiogenic switch 
and the progression into invasive tumors (Lin et al.  2006 ,  2007 ). 

 Inhibition of macrophage homing into the  tumor microenvironment   delayed the 
angiogenic switch, whereas genetic restoration of macrophages rescued the vascu-
lar phenotype. Up-regulation of  angiogenesis   in TAMs is stimulated by  hypoxia   and 
acidosis (Bingle et al.  2002 ). 

 Activated macrophages synthesize and release inducible nitric oxide synthase 
(iNOS), which increases blood fl ow and promotes  angiogenesis   (Jenkins et al. 
 1995 ). Angiogenic factors secreted by macrophages stimulate migration of other 
accessory cells that potentiate  angiogenesis  , in particular  mast cells   (Gruber et al. 
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 1995 ). Osteopontin (OPN) deeply affects the pro-angiogenic potential of human 
monocytes (Denhardt et al.  2001 ), and may affect angiogenesis by acting directly on 
ECs and/or indirectly via mononuclear phagocyte engagement, enhancing the 
expression of TNF-α and IL-1-β in mononuclear cells (Leali et al.  2003 ; Naldini 
et al.  2006 ). Macrophages release IL-12, which cause tumor regression and reduce 
metastasis in animal models, through the promotion of anti-tumor immunity and 
also to the inhibition of angiogenesis (Colombo and Trinchieri  2002 ). The anti-
angiogenic activity is mediated by IFN-γ production, which in turn induces the 
chemokine IFN-γ- inducible protein-10 (Angiolillo et al.  1995 ; Romagnani et al. 
 2001 ). Moreover, IL-12 inhibits  VEGF   production by breast cancer cells and regu-
lates  stromal cell   interactions, leading to decreased MMP-9 and increased tissue 
inhibitor of TIMP-1 production (Dias et al.  1998 ). 

 Upregulation of  angiogenesis   in TAMs is stimulated by  hypoxia   and acidosis 
(Bingle et al.  2002 ). Mice defi cient in HIF-2α in myeloid cells, displayed reduced 
TAM infi ltration in both murine hepatocellular and colitis-associated colon 
 carcinoma models (Imtiyaz et al.  2010 ). Mouse mammary tumors, exhibiting 
enriched M2-like TAMs in hypoxic tumor areas, demonstrated an increased angio-
genic activity (Movahedi et al.  2010 ). The developing vasculature in tumors lacking 
myeloid-cell-derived VEGF-A was less tortuous, with increased  PC   coverage (indi-
cating increased maturation), decreased vessel length, with evidence of   vascular 
normalization   and increased susceptibility to chemotherapeutic agents (Stockmann 
et al.  2008 ). 

 A signifi cant relationship between the number of TAMs and the density of blood 
vessels has been established in human tumors, including breast carcinoma,  mela-
noma  , glioma, squamous cell carcinoma of the esophagus, bladder carcinoma, and 
prostate carcinoma (Leek et al.  1996 ; Makitie et al.  2001 ; Nishie et al.  1999 ; Koide 
et al.  2004 ; Hanada et al.  2000 ; Lissbrant et al.  2000 ). We have recently investigated 
CD68 expression and its relationship with microvascular density in chemo-resistant 
and chemosensitive patients affected by diffuse large B-cell  lymphoma   (DLBCL) 
and observed that CD68 expression as well as microvascular density were increased 
in chemo-resistant patients when compared with chemosensitive patients 
(Marinaccio et al.  2014 ) (Fig.  4.7 ).

  Fig. 4.7    A statistically difference was observed in the expression of CD68 in responders ( on the 
left ) and non-responders ( on the right ) groups of patients affected by diffuse large B-cell  lym-
phoma   (DLBCL) (Reproduced from Marinaccio et al. ( 2014 ))       
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   Depletion of TAMs reduces to about 50 % tumor vascular density, leading to 
areas of necrosis by loss of blood supply within the tumor mass, and macrophages 
accumulate particularly in such necrotic and hypoxic areas in different tumors, like 
human endometrial, breast, prostate and ovarian carcinomas (Ohno et al.  2004 ; 
Leek et al.  1999 ).   

6     Tie-2 Expressing Monocytes (TEMs) 

  The Tie-2 tyrosine  kinase   receptor has been shown to be expressed only by ECs and 
 HSCs   (Jones et al.  2001 ). Whereas only 1–2 % of total leukocytes are Tie-2 + , a 
substantial fraction (~20 %) of circulating monocytes express Tie-2 (Venneri et al. 
 2007 ; Murdoch et al.  2007 ). The majority of the circulating TEMs do not express 
EC/EPC markers, such as VEGFR-2, AC133, CD146 and CD34, whereas they 
express hematopoietic markers, such as CD45. Moreover, circulating human TEMs 
do not express CCR-2, the receptor for MCP-1, a chemokine that regulates the 
recruitment of monocytes to infl ammed tissues and tumors. Thus, TEMs might be 
attracted to tumors in a CCR-2 independent manner, by signals produced by tumor 
cells,  stromal cells   or ECs. Indeed, Tie-2 +  CD14 +  cells isolated from human periph-
eral blood, and co-injected with human glioma cells s.c. in nude mice, promoted 
tumor vascularization whereas CD14 +  Tie-2 −  monocytes did not show this activity 
(Venneri et al.  2007 ). Human TEMs are preferentially recruited to tumors, where 
they constitute the prominent monocyte population distinct from TAMs. 

 TEMs have been observed in several mouse tumor models, including subcutane-
ous tumor grafts, spontaneous insulinomas developing in RIP-TAG2 transgenic 
mice, and human gliomas growing in the mouse brain, where they synthesize high 
levels of FGF-2 (De Palma et al.  2005 ). In these tumors, TEMs constituted a small 
population of the total tumor infi ltrating CD11b +  myeloid cells that could be distin-
guished from the majority of TAMs by their surface marker profi le (Tie-2 + , Sca-1 + , 
CD11b + ) and their pro-angiogenic activity (De Palma et al.  2005 ). TEMs were 
found in human tumors including those of kidney, colon, pancreas and lung, as well 
as in soft tissue sarcomas, where were found both in perivascular and avascular 
viable (hypoxic) areas of tumors and were missing in non-neoplastic tissues adja-
cent to tumors (Venneri et al.  2007 ). Exposure to both  hypoxia   and Ang-2 markedly 
suppressed the release by TEMs of an anti-angiogenic cytokine, namely IL-12 (De 
Palma et al.  2003 ), and of TNF-α, which exterts a pro-apoptotic effect on both 
tumor cells and ECs (Balkwill  1992 ). 

 TEMs did not differentiate into ECs, suggesting that their pro-angiogenic activ-
ity could consist of a paracrine stimulation of  angiogenesis  . The selective elimina-
tion of TEMs by means of a suicide gene impaired angiogenesis in mouse tumors 
and induced substantial tumor regression and TEMs elimination did not affect the 
overall number of TAMs and granulocytes, indicating that TEMs represent a  distinct 
monocyte subset with specifi c pro-angiogenic activity. Moreover, although recruited 
to tumors in lower numbers than TAMs, TEMs are a more potent source of pro-
angiogenic signals. 
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 De Palma et al. ( 2003 ) proposed that the percentage of incorporated EPCs into 
tumor vessels is very low. TEMs, while stimulating  angiogenesis  , do not actively 
incorporate into blood vessels and this subpopulation of Tie-2 +  cells, rather than 
bone marrow-derived EPCs, which are incorporated in new-forming blood vessels, 
promote tumor neovascularization through the release of pro-angiogenic factors. 

 TEMs may also play a role in  angiogenesis   in wound healing and in non- 
neoplastic diseases. In mice underwent partial hepatectomy 7–10 days earlier, 
 TEMs   were found in granulation tissue surrounding the regenerating hepatic lob-
ules, also in proximity of newly-formed vessels, suggesting that they might also 
contribute to promote  angiogenesis   during liver regeneration (De Palma et al.  2003 ). 
 TEMs   were not observed in normal tissues suggesting that they may represent a 
specifi c subset of resident monocytes (Venneri et al.  2007 ). 

 The identifi cation of specifi c molecules expressed by  TEMs   in tumors could 
facilitate the design of novel anticancer therapies that selectively target these cells. 
De Palma et al. ( 2008 ), by transplanting hematopoietic progenitors transduced with 
a Tie-2 promoter/enhancer-driven IFN-α-1 gene, turned  TEMs   into IFN-α cell vehi-
cles that targeted the IFN response to orthotopic human gliomas and spontaneous 
mouse  mammary carcinomas   and obtained signifi cant antitumor responses and near 
complete abrogation of  metastasis  .   

7     Fibroblasts 

  Critical  elements   in the  tumor microenvironment   include  TAFs  , which provide an 
essential communication network via secretion of growth factors and chemokines, 
inducing an altered ECM thereby providing additional oncogenic signals that 
enhance cancer cell proliferation and spread. Fibroblasts are interconnected with 
tumor cells at all stages of cancer progression by promoting tumor growth,  angio-
genesis  , and the metastatic process (Cirri and Chiarugi  2012 ). 

  TAFs   are characterized by the expression of specifi c markers and secrete growth 
factors and angiogenic factors (Tables  4.3  and  4.4 ). TAFs modulate tumor growth 
by secreting: (i) growth factors able to increase tumor cell proliferation and exert an 
anti-apoptotic activity; (ii) chemotactic factors able to recruit other  stromal cells  , 
including leukocytes, monocytes/ macrophages  , and  mast cells  . Moreover, TAFs 
(type 1 polarized fi broblasts) induce immunosuppression by an increase in Th2 
cells, Th17 cells and regulatory T cells, and are also involved in therapy resistance 
(Müerköster et al.  2004 ). Co-injection of  TAFs  , but not of normal  fi broblasts  , with 
tumor cells resulted in enhanced tumor formation (Hu et al.  2009 ; Augusten  2014 ).

     TAFs   (type 2 polarized fi broblasts) are predominantly assigned with a tumor 
promoting function under the infl uence of growth factors and chemokines. They 
stimulate cancer cell survival, growth, and invasion, contribute to  angiogenesis  , and 
impact the activations state of various immune cells (Augusten  2014 ). 

  TAFs   were increased in patients with active  MM   compared to those in remission 
and those with MGUS (Frassanito et al.  2014 ). The cells displayed an activated 
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phenotype, and produced high levels of TGF-β, IL-6, SDF-1α, and insulin-like 
growth factor (IGF-1). Moreover, they showed a heterogeneous phenotype which 
entailed their origin from resident fi broblasts, and from ECs and  HSCs   via 
endothelial- mesenchymal transition, and from  MSCs   via mesenchymal transition, 
all induced by both TAMs and MM plasma cells. Active  MM   fi broblasts favored 
chemotaxis, adhesion, proliferation and apoptosis-resistance of MM cells through 
cytokines and cell-to-cell contact that was inhibited by blocking CXCR4, several 
integrins, and fi bronectin. Finally, studies in syngeneic 5T33MM and xenografted 
mouse models showed that  MM   cells induced the  TAFs   recruitment and expansion 
which, in turn, favored tumor initiation and progression as well as  angiogenesis    
(Frassanito et al.  2014 ).  

8     Osteoblasts and Osteoclasts 

   Osteoblasts derived  from       MSCs   following timely programmed steps requiring the 
expression of specifi c genes, including bone morphogenetic proteins (BMPs) and 
Wnt pathways (Grigoriadis et al.  1988 ). Osteoblasts express the pro-angiogenic fac-
tor OPN and Ang-1 at the bone surface that are required for osteoblast-mediated 
 HSCs   maintenance (Arai et al.  2004 ). Ang-1 binds Tie2 expressed by BM-HSCs, 
inducing the activation of β1 integrin and N-cadherin and contributing to the 

  Table 4.3    Markers expressed 
by tumor associated 
 fi broblasts    

 Vimentin 
 Fibroblast specifi c protein 1 (FSP1) 
 Fibroblast activating protein (FAP) 
 Alpha smooth actin (αSma) 
 Thy1 (CD90) 
 Thrombospondin-1 (TSP-1) 
  Platelet   derived growth factor receptor 
α/β (PDGFR α/β) 
  Tenascin  -c (TN-C) 
  Matrix metalloproteinase  -3 (MMP-3) 
 Podoplanin 
 Neuron glial antigen 2 (NG2) 
 Periostin 
 Palladin 

  Table 4.4    Growth factors 
and angiogenic factors 
secreted by tumor associated 
 fi broblasts    

  Interleukin  -6 (IL-6) 
 Insulin-like growth factor (IGF) 
 Hepatocyte growth factor (HGF) 
 Fibroblast growth factor-2 (FGF-2) 
 CXCL-8 (IL-8) 
 CXCL-12 
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activation of HSCs (Arai et al.  2004 ). Moreover, Ang-1 is expressed by  MM   plasma 
cells and is associated with up-regulated expression of its specifi c receptor Tie-2 on 
the bone marrow ECs and enhanced  angiogenesis   (Giuliani et al.  2003 ). OPN is 
involved in the interplay between  HSCs   and  osteoblast niche   and inhibits HSCs 
proliferation (Nilsson et al.  2005 ). 

 Osteoblasts/HSCs interactions lead to the expression of receptor activator of 
RANKL and Notch activation (Yin and Li  2006 ). A small subset of spindle-shaped 
osteoblasts lining cells expressing N-cadherin, are the niche for  HSCs   in the  BM   
(Zhang et al.  2003 ), and an increase in their number is correlated with an increase 
in HSC number (Calvi et al.  2003 ). 

  VEGF   acts as a potent chemoattractant for osteoclasts (Mayr-Wohlfart et al. 
 2002 ), that regulate VEGF expression by ECs through the release of TGF-β from 
the bone matrix and its activation during bone resorption (Shao et al.  2009 ). 
Moreover, osteoclasts release heparinase that degrades heparin sulphate proteogly-
cans releasing  VEGF   and FGF-2, which contributes to aultocrine osteoclast activa-
tion and paracrine stimulation of osteoblast activity (Collin-Osdoby et al.  2002 ; 
Padera et al.  1999 ; Saijo et al.  2003 ). Osteoclasts release also BMP-7, which 
 promotes EC survival and increases VEGF production (Garimella et al.  2008 ), and 
amphiREGulin, epiREGulin, and NeuREGulin, that induce EC migration and tube 
formation (Mehta and Besner  2007 ). Secretion of MMP-9 by osteoclasts enhances 
 angiogenesis   through the release of VEGF from the ECM (Cackowski et al.  2009 ). 

 Inhibition of osteoclasts reduces  angiogenesis   and tumor burden in  MM   
(Croucher et al.  2003 ). Osteoclasts secrete OPN, which cooperates with  VEGF   of 
MM plasma cells to enhance  angiogenesis   and induce osteoclastogenic activity by 
ECs (Tanaka et al.  2007 ). Moreover, in combination with IL-6, OPN enhances  MM   
plasma cell growth (Abe et al.  2004 ). OPN knockout mice display minimal bone 
resorption compared with wild type and decreased osteoclast association at the bone 
surface (Asou et al.  2001 ).    

9     Cancer Stem Cells (CSCs) 

   CSC   may be defi ned as “a small substet of cancer cells within a cancer that constitute 
a reservoir of a self-sustaining cells with the exclusive ability to self-renew and to 
cause the hetereogenous lineages of cancer cells that comprise the tumor” (Clarke 
et al.  2006 ). 

 The property of self-renewal is a hallmark of CSC. Mechanisms involved in self- 
renewal are dysregulated and lead to CSC overpopulation. Tumor cells in any can-
cer may be organized as a hierarchy than can be roughly classifi ed as long term CSC 
(LT-CSC), short-term CSC (ST-CSC), early and late tumor progenitors, and differ-
entiating and differentiated tumor cells. The LT-CSC should possess indefi nite self- 
renewal and ST-CSC some self-renewal properties. So, CSC like normal SC give 
rise to hierarchical organization of cell populations that, in turn, produce rapidly 
proliferating cells, resulting in the generation of fully differentiated cells (Reya 
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et al.  2001 ). At the top of the hierarchy there is a CSC that expresses surface  markers 
of primitive cells and possesses differentiation potential and limitless proliferative 
potential. 

 CD133/AC133 was discovered as a marker of normal  HSCs   and later was found 
to mark SCs from a wide variety of tissues (Shmelkov et al.  2005 ). CD133 was used 
to purify putative CSC in different tumors (Boman and Wicha  2008 ). CD44 and 
CD24 have been proposed as markers for CSC several tumors; however, while some 
literature data indicated the existence of CD44+/CD24- cells as CSCs in breast, 
prostate, colon, pancreatic, and hepatic carcinoma, and  melanoma   (Wicha et al. 
 2006 ; Dalerba et al.  2007 ), other works demonstrated that the lack of CD24 expres-
sion is not an essential feature of CSC. In fact, a subpopulation of CD24+ cells 
possesses SC characteristics in colon and pancreatic carcinoma (Ke et al.  2012 ; 
Zhang et al.  2012 ). CD20 has been proposed as a marker in  melanoma   and MM; 
CD166 in colon carcinoma; aldehyde dehydrogenate 1A1 (ALDH1) in breast, pros-
tate, and pancreatic carcinomas, leukemia and  multiple myeloma  ; epidermal surface 
antigen (ESA) in breast, colon, and pancreatic carcinomas (Boman and Wicha 
 2008 ). ABCG2, a member of the ABC transporters, which pump a variety of endog-
enous and exogenous compounds out of cells, is recognized as a universal marker of 
SC and plays an important role in promoting SC proliferation and the maintenance 
of the SC phenotype. Moreover, ABCG2 is a marker of CSC (Ding et al.  2010 ). In 
brain tumors, CD133+ but non CD133- cells, grow in aerosphere conditions, express 
a number of neuronal SC markers, are highly tumorigenic and resistant to radiation 
(Singh et al.  2003 ; Lee et al.  2006 ). CSCs express also angiogenic markers 
(Table  4.5 ).

   CSC markers could be used for prediction treatment responses by means of the 
identifi cation of the presence of specifi c CSC subtypes sensitive to the therapeutic 
agents and have a prognostic value by allowing assessment of the size of the CSC 
population within any give tumor. However, no defi ned localization patterns have 
been established when the in situ distribution of CSC markers is evaluated. In addi-
tion, the markers used to sort putative cancer-initiating cells, including CD24, 
CD44, and CD133, are also expressed on normal cells (Clarke et al.  2006 ). 

 The demonstration that tumor growth depends on a subpopulation of proliferat-
ing CSC was fi rst described in transmittable leukemias of mice. Furth and Kahn 

   Table 4.5    Angiogenic markers expressed by  cancer stem cells     

 Tumor type   CSC   marker  Angiogenic marker 

 Malignant glioma  CD133  VEGF 
 Glioblastoma  Nestin  VEGF 
 Melanoma  CD133, ABCG2 a   VEGF, VEGFR-2, Ang-1, Ang-2, Tie2 
 Oligodendroglioma  CD133, Nestin  CD34 
 Pancreatit cancer  CD133  VEGF-c 
  Hepatocellular 
carcinoma   

 CD133, ABCG2, Nestin, 
CD44 

 VEGF,  PDGF   

   a ABCG2, ATP-binding cassette subfamily G member 2  
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( 1937 ) were able to transplant leukemia from one mouse to another using a single 
undifferentiated cell and Makino and Kano ( 1955 ) obtained clones of tumor cells 
from single cells. Researchers started to search for stem-like cells in leukemias by 
testing the ability of various purifi ed populations to form leukemia in non-obese 
diabetic/severe combined immunodefi ciency (NOD-SCID) mice. Injection of leu-
kemic cells with primitive hematopoietic progenitors resulted in leukemias that 
could be serially transplanted into secondary recipients, whereas injection of more 
differentiated leukemic cells did not (Bonnet and Dick  1997 ). Kelly et al. ( 2007 ) 
used two transgenic mouse models in which the Eμ enchancer was used to express 
either the  c-myc  or  N-ras  oncogenes to induce B or T cell lymphomas. They con-
cluded that “tumor growth need not be driven by rare  cancer stem cells  ” based 
upon >10 % of transplanted cells give rise to tumors in syngeneic mice. Guo et al. 
( 2008 ) using a mouse model of human leukemia in which depletion of the  Pten  
tumor suppressor gene in  HSC   resulted in a myeloproliferative disorder followed by 
acute T lymphoblastic leukemia demonstrated that population of leukemia SCs was 
responsible for leukemia development. 

 CSCs have been identifi ed in several human solid tumors, including  melanoma  , 
brain, colorectal, hepatic, head and neck, breast and prostate cancer (Reya et al. 
 2001 ; Singh et al.  2003 ; Lee et al.  2006 ), and are able to initiate tumor formation 
and  metastasis   and there is a growing body of evidence suggesting that metastases 
develop when distant organs are seeded with CSCs that arise from a primary tumor 
(Balic et al.  2006 ). Hermann et al. ( 2007 ) identifi ed a subset of CD133 + /CXCR4 +  
pancreatic CSCs located at the invasive front of tumors, which seem to be more 
responsible  for   metastasis. 

 The frequency of functionally defi ned CSCs vary among different patients and in 
some cases are relatively rare, whereas in others can constitute a substantial propor-
tion of the tumor mass (Quintana et al.  2008 ).  Glioblastoma multiforme   contains 
neural precursors endowed with all the critical features from neural SCs (Galli et al. 
 2004 ). When neurospheres derived from highly vascularized glioblastomas were 
transplanted into mice, the initial tumors demonstrated low-grade glioma phenotype 
without any sign of angiogenesis. Upon serial transplantation, the tumor cells devel-
oped a highly malignant phenotype with extensive  angiogenesis   and necrosis in 
tumor masses (Sakariassen et al.  2007 ). 

 CSCs that express markers of vascular endothelium and form  tumor blood ves-
sels   have been described. Brain tumor ECs interact with self-renewing brain tumor 
cells and secrete factors that maintaining them in a ‘stem cell-like’ state. An 
increased number of ECs promotes the expansion of self-renewing SC and acceler-
ates tumor growth, while their depletion has the opposite effect (Frank et al.  2010 ; 
Stupp and Hegi  2007 ). Calabrese et al. ( 2007 ) established a co-culture system to 
investigate the interaction between vascular  ECs   and CSCs and demonstrated that 
ECs interact with Nestin + /CD133 +  CSCs and provide factors that support their self-
renewal mechanisms, demonstrating that the vasculature is essential in supporting 
and preserving the survival, stem-like properties, and functions of CSCs. Moreover, 
Calabrese et al. ( 2007 ) showed that bevacizumab can reduce the stem-like cell frac-
tion in brain tumors. 
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 Ricci-Vitiani et al. ( 2010 ) demonstrated that in vitro culture of glioblastoma 
stem-like cells (GSC) in conditions favorable to an EC differentiation generated a 
progeny with phenotypic and functional features of ECs. Moreover, orthotopic or 
subcutaneous injection of GSCs in immunocompromised mice generated large ana-
plastic tumor xenografts, showing a vessel wall formed by human ECs derived from 
GSCs whereas tumor derived ECs formed large anaplastic tumors in secondary 
recipients. Finally, selective targeting of ECs generated by GSC in mouse xeno-
grafts resulted in tumor regression, suggesting a functional relevance of GSC- 
derived  ECs  . Accordingly to these data, Wang et al. ( 2010 ) demonstrated that GSCs 
can give rise to ECs or tumor cells, through an intermediate CD133 + /CD144 +  pro-
genitor cell. CSCs produce much higher levels of  VEGF   in both normal and hypoxic 
conditions than non-CSC population, leading to a strong angiogenic response (Bao 
et al.  2006 ). 

 CSCs may represent a plastic entity whose phenotype and function are continuously 
modulated by the  tumor microenvironment  , epigenetic regulation, and different 
experimental systems. Accordingly, Quintana et al. ( 2008 ) showed that modifi ed 
xenotransplantation assay conditions, including the use of more highly immunocom-
promised NOD-SCID IL-2 receptor gamma chain null mice, can increase the detec-
tion of tumorigenic  melanoma   cells by several orders of magnitude. CXCR4 
expression by a subset of CSCs might be responsible for the signals that CSCs 
receive from the local microenvironment, determining which cancer cell possesses 
the capacity to self-renewal (Hermann et al.  2007 ). Moreover, CSC angiogenic 
potential may differ depending on the stage of tumor progression. Accordingly, more 
primitive cells may play a more signifi cant role at an early stage when the tumor is 
smaller, whereas more mature cells may be involved as the tumor increases in size. 

 CSCs may reside in a  vascular niche   in close proximity to blood vessels (Borovski 
et al.  2011 ) named as ‘cancer stem cell niche’ (Calabrese et al.  2007 ). Relationship 
between CSCs and their niche may be bi-directional: CSCs generate angiogenic 
factors to stimulate angiogenesis and the tumor vasculature supports maintaining 
CSC self-renewal and maintenance. Inhibition of vessel growth may destroy the 
niche and reduce the number of CSCs (Yang and Wechsler-Reya  2007 ). 

  Vascular niche   may be considered as a specialized microenvironment that, 
through paracrine signaling interactions, control CSC proliferation and fate deter-
mination. The activation by angiogenic factors and infl ammatory cytokines switch 
the “vascular niche” to promote tumor growth (Butler et al.  2010 ). Bao et al. ( 2006 ) 
observed that GSCs CD133 −  are located near to blood vessel, while SCLGC CD133 +  
cells generated high vascularized tumors expressing 10–20 fold more  VEGF   than 
the CD133 −  fraction. Moreover, anti-VEGF antibody bevacizumab depleted 
SCCGC-induced vascular EC migration and tube formation and inhibited the tumor 
growth of SCLGC-derived xenografts. Folkins et al. ( 2009 ) demonstrated that tumor 
with larger SCLGC population recruited a higher amount of EPCs suggesting that 
SCLGC promote  angiogenesis   and EPC mobilization through release of  VEGF   and 
SDF-1. Calabrese et al. ( 2007 ) demonstrated that oligodendroglioma and GSCs, 
which expressed the major intermediate fi lament protein nestin, are located in close 
proximity to CD34+ capillaries and are positively correlated to microvascular 
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density. These fi ndings strongly support the hypothesis that CSCs are located within 
a “ vascular niche  ”. 

 CSC are more resistant to chemotherapeutic agents and radiation therapy than 
more mature cell types from the same tissue because of increased expression of 
antiapoptotic proteins (Frank et al.  2010 ; Calabrese et al.  2007 ). Even if therapy 
kills all proliferating cells, SCs repopulate tumors. Radioresistance, chemotherapy 
resistance and  angiogenesis   mediated by CSCs could partially explain tumor recur-
rence in more aggressive human tumors. Inhibition of  angiogenesis   alone may not 
be suffi cient to eradicate CSCs, even if anti-angiogenic therapy may sensitize CSCs 
to cytotoxic effects of chemotherapy. 

 Treatment of mice transplanted with human acute myeloid leukemia (AML) 
cells with anti-CD44 or anti-CXCR4 antibodies markedly reduced leukemic 
repopulation by CSCs (Jin et al.  2006 ; Tavor et al.  2004 ). When these monoclonal 
antibodies were injected into NOD/SCID mice repopulated with AML, the leuke-
mic SCs were markedly depleted and in some cases, the mice were cured (Jin 
et al.  2006 ; Tavor et al.  2004 ). BMP-4 inhibits the tumorigenic potential of glio-
blastoma CSC through the BMP-4/BMPR/SMAD signaling pathway indicating 
that BMP play a critical role in CSC tumorigenesis and  angiogenesis   (Piccirillo 
et al.  2006 ). Notch inhibitor DAPT gamma secretase inhibitor leads to a reduction 
of self-renewal ability of CSCs and the number of CD133 +  tumor cells and of 
vascular markers, including CD105, CD31, and von Willebrand factor (Hovinga 
et al.  2010 ). 

 It is possible to treat cancer by inducing differentiation of CSCs, i.e. differentia-
tion therapy (Spira and Carducci  2003 ). In general, SC differentiation results in two 
types of changes: the expression of specialized, differentiation-specifi c gene prod-
ucts and a partial or complete restriction of the cell’s capacity for further prolifera-
tion. The most thoroughly examined and clinically tested as differentiating agents are 
retinoic acid (RA, vitamin A), in particular all-trans-retinoic acid (ATRA). Currently, 
about 90 % of newly diagnosed patients with acute promyelocytic  leukemia (APL) 
achieve complete remission and over 70 % are cured by ATRA therapy (Camacho 
 2003 ) with or without concomitant chemotherapy with methotrexate and cytarabile 
(Ohno et al.  2003 ). Moreover, retinoids not only induce differentiation in leukemia, 
but they also regulate anti-apoptotic genes (Andreeff et al.  1999 ).   

10     Circulating Endothelial Cells  and Endothelial 
Precursor Cells  

  Normal  adults   have a low number of circulating ECs per ml of peripheral blood 
(Solovey et al.  1997 ). Most of these cells are quiescent, and at least half are micro-
vascular as defi ned by CD36 positivity (Solovey et al.  1997 ). Circulating ECs are 
detectable in diseases marked by vascular injury, including sickle cell anemia, 
acute myocardial infarction, thrombotic thrombocytopenic purpura, and active 
cytomegalovirus infection (Hladovec et al.  1978 ; Grefte et al.  1993 ; Lefevre et al. 
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 1993 ; Solovey et al.  1997 ). Immature EPCs from primitive  HSCs   share common 
surface, i.e. AC-133, CD34 or VEGFR-2. There is no exclusive EPC marker. Both 
EPCs and mature ECs express similar endothelial-specifi c markers, including 
VEGFR-2, Tie- 1, Tie-2 and VE-cadherin (Sato et al.  1993 ; Schnurch and Risau 
 1993 ; Vittet et al.  1996 ; Eichmann et al.  1997 ). Moreover, HCs subsets express 
markers similar to those of EC, including CD34, PECAM, Tie-1, Tie-2, Eph and 
VEGR-1, transcription factors such as SCL/tal-1 and AML1, von Willebrand factor 
(vWF) (Suda et al.  2000 ; Lyden et al.  2001 ). 

 Asahara et al. ( 1997 ) showed that CD34 + , VEGFR-2 +  circulating EPCs form 
colonies that take up acetylated LDL. When CD34 + , VEGFR2 + , CD34 −  or VEGFR-
2 −  cells were injected into mice, rats, and rabbits undergoing neovascularization due 
to hind limb ischemia, CD34 +  and VEGFR-2 +  cells, but rarely CD34 −  or VEGFR-2 −  
cells, incorporated into the vasculature in a manner consistent with their being EC 
(Asahara et al.  1997 ). AC 133 is also expressed on EPC subsets, but not on mature 
ECs (Yin et al.  1997 ). Its expression is rapidly downregulated as  HSCs   and EPCs 
differentiate (Yin et al.  1997 ; Miraglia et al.  1997 ). Peichev et al. ( 2000 ) demon-
strated that a small subset of CD34 +  cells from different hematopoietic sources 
express both AC 133 and VEGFR-2. Incubation of this subset with  VEGF  , FGF-2 
and collagen resulted in their proliferation and differentiation into AC 133 −  
VEGFR- 2 +  mature ECs. Maturation and in vitro differentiation of these cells abol-
ish AC 133 expression, suggesting that EPCs with angioblast potential may be 
marked selectively with AC 133. 

 Gehling et al. ( 2000 ) demonstrated that AC133 +  cells from  G-CSF  -mobilized 
peripheral blood differentiate into ECs when cultured in the presence of  VEGF   and 
stem cell growth factor. Phenotypic analysis revealed that most of these cells dis-
play endothelial features, including the expression of VEGFR-2, Tie-2 and vWF. AC 
133 is the best selective marker for identifying EPCs and circulating CD34 +  cells 
VEGFR-2 +  and AC133 +  constitute a phenotypically and functionally distinct popu-
lation of circulating ECs that may play a role in postnatal vasculogenesis. AML1 is 
expressed in ECs in sites where early  HSCs   emerge, such as the yolk sac (North 
et al.  1999 ), and AML1-defi cient embryos, which lack defi nitive hematopoiesis, 
display defective  angiogenesis   in the head and pericardium (Takakura et al.  1998 ). 

 Most circulating EPCs reside in the bone marrow in close association with  HSCs   
and the stroma. When EPC are mobilized from adult BM, they fi rst migrate from a 
quiescent niche within the BM into a permissive, proliferative microenvironment, 
the so-called vascular zone of marrow. MMP-9 as well as the survival/mitogenic 
activity of the stem cell cytokine SkitL are critical during this process. Release of 
EPCs from BM into circulation can be induced by  GM-CSF   or  VEGF   and is depen-
dent on the activity of endothelial nitric oxide synthase (eNOS) expressed by  stro-
mal cells   in BM (Aicher et al.  2003 ). Statins, erythropoietin and estrogen also 
positively infl uence EPC number (Dimmeler et al.  2001 ; Vasa et al.  2001 ; Heeschen 
et al.  2003 ; Strehlow et al.  2003 ). 

 EPCs in the peripheral blood may derive from the BM and be not yet incorpo-
rated into the vessel wall. The following lines of evidence suggest that they consti-
tute the preponderance of circulating BM-derived endothelial lineage cells. Asahara 
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et al. ( 1999 ), employed a BM transplant model in mice sublethally irradiated to 
demonstrate the incorporation of BM EPCs into foci of neovascularization. Four 
weeks after transplants, when the BM had been reconstituted, a variety of surgical 
experiments to provoke neovascularization were performed: (i) Cutaneous wounds 
examined 4 and 7 days after skin removal by punch biopsy disclosed a high fre-
quency of incorporated EPCs. (ii) One week after the onset of hind limb ischemia, 
EPCs were incorporated in capillaries among  skeletal myocytes. (iii) After perma-
nent ligation of a coronary artery, myocardial infarction sites demonstrated incorpo-
ration of EPCs in foci of neovascularization at the border of the infarct. 

 Shi et al. ( 1998 ) implanted an impermeable Dacron graft made in the canine 
thoracic aorta and demonstrated scattered islands of ECs without any evidence of 
transmural  angiogenesis  . Later, they used a transplantation model in which marrow 
cells from donors and recipients were distinguishable to determine whether ECs 
lining a vascular prosthesis are derived from the BM (Shi et al.  1998 ). After 12 
weeks, the graft was retrieved, and cells with endothelial morphology were identi-
fi ed; only donor alleles were detected in DNA from positively stained cells on the 
graft. These results suggested that a subset of CD34 +  cells located in the BM mobi-
lize to the peripheral circulation and colonize the endothelial fl ow surface of vascu-
lar prostheses. 

 Lin et al. ( 2000 ) found a distinction between vessel wall and BM- derived ECs in 
blood samples from subjects who had received gender-mismatched bone marrow 
transplants 5–20 months earlier. They showed that 95 % of circulating ECs had 
recipient genotype and 5 % had donor genotype. After 9 days of culture, ECs derived 
predominantly from the recipient vessel wall, expanded only sixfold, compared 
with 98-fold after 27 days by ECs, mostly originated from donor BM cells. These 
data suggest that most circulating ECs in fresh blood originate from vessel walls 
and have limited growth capability, and that outgrowth of ECs is mostly derived 
from transplantable marrow-derived cells. In animal models, EPCs home in on sites 
of active neovascularization and mobilization of BM- derived EPCs, and differenti-
ate into ECs in response to tissue ischemia (Takakura et al.  1998 ). This fi nding is 
consistent with postnatal vasculogenesis. 

 Identifi cation of the chemokines that induce mobilization of BM EPCs to the 
peripheral circulation may provide a novel mechanism for their recruitment to sites 
of vascular trauma to accelerate vascular healing (Rafi i  2000 ). Moreover, expansion 
and mobilization of EPCs may augment the resident population of ECs competent 
to respond to exogenous angiogenic cytokines (Isner and Asahara  1999 ). Kalka 
et al. ( 2000 ) have demonstrated that transplantation of EPCs to athymic mice with 
hind limb ischemia markedly improves blood fl ow recovery and  capillary   density in 
the ischemic limb and signifi cantly reduces the rate of limb loss. 

 The recruitment of EPCs to tumor  angiogenesis   is a multistep process, including: 
(a) active arrest and homing of the circulating cells within the angiogenic microvas-
culature; (b) transendothelial extravasation into the interstitial space; (c) extravascu-
lar formation of cellular clusters; (d) creation of vascular sprouts and cellular 
networks; (e) incorporation into a functional microvasculature. 

4 Infl ammatory Cells in Tumor Microenvironment
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 High  VEGF   levels favour and enhance differentiation of  HSCs   toward the EPC 
lineage (Takahashi et al.  1999a ,  b ; Gillies et al.  2008 ). High levels of VEGF 
 produced by tumors may result in the mobilization of BM-derived SCs in the 
peripheral circulation and enhance their recruitment into the tumor vasculature 
(Asahara et al.  1999 ; Hattori et al.  2000 ). Moreover, Hattori et al. ( 2000 ) showed 
that combined elevation of VEGF and Ang-1 result in remodeling of the bone archi-
tecture, with depletion of the sinusoidal spaces of hematopoietic cells and a parallel 
increase in BM vascularization and splenomegaly.  Hypoxia   can also  mobilize EPCs 
from the BM in the same way as hematopoietic cytokines, such as  GM-CSF   
(Takahashi et al.  1999a ,  b ). Malignant tumor growth results in neoplastic tissue 
hypoxia, and may mobilize BM-derived ECs in a paracrine fashion and thus con-
tribute to the sprouting of new tumor vessels. Lyden et al. ( 2001 ) demonstrated that 
transplantation and engrafment of β-galactosidase-positive wild- type BM or VEGF-
mobilized SCs into lethally irradiated Id-mutant mice is suffi cient to reconstitute 
tumor  angiogenesis  . In contrast to wild type mice, Id-mutants fail to support the 
growth of tumors because of impaired angiogenesis. Tumor analysis demonstrates 
the uptake of BM-derived VEGFR-2 +  EPCs into vessels surrounded by VEGFR-1 +  
myeloid cells. Defective  angiogenesis   in Id-mutant mice is associated with impaired 
VEGF-induced mobilization and proliferation of the BM precursor cells. Inhibition 
of both VEGFR-1 and VEGFR-2 signaling is needed to block tumor  angiogenesis 
  and induce necrosis. 

 Vajkoczy et al. ( 2003 ) propose the term “angiomorphosis” as the process of 
enhancing tissue vascularization through active recruitment of EPCs from the circu-
lation by ECs and the action of EPCs as organizers of the angiogenic process.   

11     Multipotent Adult Progenitor Cells (MAPCs) 
and Myeloid-Derived Suppressor Cells (MDSCs) 

     Reyes et al. ( 2002 )  have      identifi ed a single cell in human and rodent postnatal 
 marrow that they term the MAPCs. MAPCs were selected by depleting adult BM of 
HC expressing CD45 and glycophorin-A, followed by long-term culture on fi bro-
nectin with epidermal growth factor (EGF) and  PDGF   under low serum conditions. 
A cell population expressing AC133 and low levels of VEGFR-1 as well as 
VEGFR-2 and the embryonic stem cell marker Oct-4 emerged. Its culture with 
 VEGF   induced differentiation into CD34 + , VE-cadherin + , VEGFR-2 +  cells, a phe-
noptype consistent with angioblasts. Subsequently these cells express vWF and 
markers of mature endothelium, such as CD31, CD36 and CD62-P. MAPCs form 
vascular tubes when plated on Matrigel and upregulate angiogenic receptors and 
 VEGF   in response to  hypoxia.   

 MDSCs have been characterized by cell surface co-expression of CD11b and 
Gr1 (Gabrilovich and Nagarajas  2009 ). In cancer, MDSCs undergo abnormal 
expansion and accumulate in different sites, including  BM  , spleen, liver, and tumor 
site sustaining tumor-derived  infl ammation   and inducing tumor progression, neo-
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vascularization and immune escape. MDSCs are mobilized during tumorigenesis 
and infi ltrate developing tumors where they promote vascularization (Talmadge and 
Gabrilovich  2013 ) and disrupt major mechanisms of immunosurveillance 
(Gabrilovich et al.  2012 ). An elevated number of peripheral MDSCs correlate with 
advance disease and therapeutic ineffi cacy (Diaz-Montero et al.  2009 ). 

 MDSCs are one of the major components of the immunosuppressive network 
responsible for the impairment of the NK cell and T cell-dependent anti-cancer 
immunity and promote  angiogenesis  , cancer cell invasion, and  metastasis   (Monu 
and Frey  2012 ; Gabrilovich and Nagarajas  2009 ). The immunosuppressive effects 
of MDSCs are exerted through activation and expansion of the Treg population, 
interference with lymphocyte traffi cking, creation of oxidative stress and depletion 
of nutrients (Gabrilovich et al.  2012 ). GM-CSF, VEGF, IL-3 promote blockade of 
myeloid maturation with an expansion in the MDSC population. Combined treat-
ment with anti-Gr1 and anti-VEGF results in more pronounced reduction in the 
vascular surface area compared with anti-VEGF treatment alone (Shojaei et al. 
 2007 ). 

  MDSCs   and Treg cells are mobilized into the circulation in response to activated 
cytokines that are induced by tumorigenesis, including TGF-β and CXCL5-CXCR2. 
 MDSCs   and Treg cells infi ltrate the growing tumor to disrupt immune surveillance 
through multiple mechanisms, including disruption of antigen factors, secrete ECM 
proteins and  BM   components, regulate differentiation, modulate immune responses 
and contribute to deregulated homeostasis. 

 The identifi cation of molecular pathways involved in MDSC function will lead 
to the development of new agents that disrupt the tumor-host interactions, thus 
improving the effi cacy of immunotherapy.            

4 Infl ammatory Cells in Tumor Microenvironment
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    Chapter 5   
 Therapeutic Strategies, the Concept 
of “Normalization” and the Role of VEGF 
Inhibition                     

    Abstract     There are a number of anti-angiogenic agents in clinical development 
showing varying degree of antitumor activity. The most promising include bevaci-
zumab, the humanized anti-monoclonal antibody anti-VEGF approved for use in 
combination with cytotoxic agents, as well as small molecule receptor tyrosine 
kinase inhibitors (RTKIs). Targeting infl ammatory processes as anti-angiogenic 
strategy in cancer can be benefi cial. The normalization of tumor blood vessels by 
anti-angiogenic drugs is probably transient, and dependent on the dose and duration 
of the treatment.  

  Keywords     Biphosphonate compound   •   Botrezomib   •   Cediranib   •   COX-2 inhibitor   
•   Lenalidomide   •   Liposomes   •   Lymphangiogenesis   •   Non-steroidal anti- infl ammatory 
drugs   •   Placental growth factor   •   Rapamycin   •   Thalidomide   •   Therapeutic strategies   
•   Vascular normalization   •   Vinblastine   •   Zoledronic acid  

           With  more      than a million people treated with VEGF pathway inhibitors worldwide, 
anti-angiogenic treatment represents the most validated example that disruption of 
the tumor environment is an effective strategy for cancer treatment. Unfortunately, 
the stroking benefi ts of anti-angiogenic therapy observed in treating mouse tumors 
have not been translated to the clinic (Table  5.1 ). All of these drugs have only mod-
est effects on human cancers. Despite signifi cant improvement of clinical outcome 
in combination with chemotherapy, survival benefi ts of anti-angiogenic drugs in 
combination settings remain modest in most cancer types (Kerbel 2008).

   The patient’s benefi t for the treatment is not satisfactory because of transient and 
modest performance of the anti-angiogenic agents in the clinic, off target toxicities 
(Table  5.2 ) and intrinsic refractoriness. These agents used as monotherapy or in 
combination with chemotherapy have only provided survival benefi ts on the order 
of weeks to months in some tumor types and have not been effi cacious in all the 
others.

   Moreover, anti-angiogenic therapy has been reported to cause an increased 
 metastatic phenotype, through increased tumor  hypoxia   and hypoxia-induced  EMT   
(Paez-Ribes et al.  2009 ; Ebos et al.  2009 ). 

 Anti-angiogenic drugs are delivered to cancer patients by systemic administration 
which may affect healthy vasculature distributed in multiple organs (Cao  2010 ). 
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Optimization of anti-angiogenic therapy involves the development of drug delivery 
systems that enable kinetic personalized therapy (Cao  2010 ). 

 Since March 2008, bevacizumab has been approved for treating patients with 
late-stage colon cancer, non-small cell lung cancer and breast cancer, all in combi-
nation with chemotherapy. The Food and Drug Administration (FDA) removed 
breast cancer because of the absence of clear benefi t on the overall survival. 

 Two kinase inhibitors (Table  5.3 ), sorafenib and sunitinib, targenting  VEGFRs   
tyrosine kinases, have both approved for treating renal carcinoma. In addition, 
 sunitinib has been approved for treating gastrointestinal tumors, and sorafenib for 
 hepatocellular carcinomas  .

   Targeting infl ammatory processes as anti-angiogenic strategy in cancer can be 
benefi cial. COX-2 expressing tumor cells are associated with the production of 
angiogenic growth factors and the synthesis and activation of MMPs, favoring 
tumor invasion and  angiogenesis   (Tsujii et al. 1997; Takahashi et al.  1999b ). COX-2 
itself has a pro-angiogenic activity (Macarthur et al.  2004 ), upstreams of VEGF 
production in  stromal cells   (Boccaccio et al.  2005 ), and catalyzed prostaglandin 
(PGE)-2 expression playing a critical role in the HIF-1α-mediated regulation of 

   Table 5.1    Differences between human cancer and mouse tumor models   

 Features  Human  Mouse 

 Assessment  Survival  Tumor size 
 Tumor site  Intrinsic  Artifi cial 
 Tumor growth rate  Slow  Fast 
 Age  Old  Young 
 Genetic background  Heterogeneous  Homogeneous 
 Treatment  Begins at the advantage stage  Begins at the early stage 

  Table 5.2    Toxicities due to 
anti-angiogenic therapy  

  Cardiovascular  
 Hypertension 
 Thromboembolic disease 
 Left ventricular dysfunction 
 Myocardial ischemia 
  Non-cardiovascular  
 Proteinuria 
 Bleeding 
 Delayed wound healing 
 Gastrointestinal perforation 
 Fatigue 
 Thyroid dysfunction 
 Stomatitis 
 Myelosuppression 
 Cutaneous effects 
 Disphonia 
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 VEGF   expression in hypoxic tumor areas (Liu et al.  2002 ). Inhibition of COX-2 
activity reduces IL-6 and IL-8 secreted by tumor cells, prevent transformed cells 
from inducing suppression of cell mediated immune response and inhibits apoptosis 
(Tsujii et al.  1997 ; Taketo  1998 ; Subbaramaiah et al.  1997 ; Grinwick and Plescia 
 1977 ), supporting the link between infl ammation and angiogenesis (Luca et al. 
 1997 ; Hong et al.  2000 ). Moreover, inhibition of COX-2 enhances radiosensitivity 
of malignant cells as well as decreasing the radiation-dependent effects of increased 
 angiogenesis   and normal cell toxicity (Choi and Milas  2003 ). 

 Several studies have demonstrated that regular use of aspirin and other  non- 
steroidal anti-infl ammatory drugs (NSAIDs)   is associated with a reduced risk of 
some cancers, in particular of the gastrointestinal tract, lung, breast cancer, and 
bladder cancer and also induce tumor regression (Brown and DuBois  2005 ; Thun 
and Namboodin  1991 ; Schreinemachers and Everson  1994 ; Funkhouser and Sharp 
 1995 ; Mann et al.  2005 ; Ulrich et al.  2006 ; Harris et al.  2006 ; Castelao et al.  2000 ; 
Lejeune et al.  2006 ).  NSAIDs   act as anti-angiogenic agents blocking the production 
of PGs, or through an inhibition of  VEGF   and HGF (Boccaccio et al.  2005 ). 

 The anti-infl ammatory agent celecoxib (Celebra), originally approved by the 
FDA for the treatment of osteoarthritis, is now indicated also in the treatment of 
familiar adenomatous polyposis and in clinical trials for both prostate and pancre-
atic cancer for its anti-angiogenic activity (Demaria et al.  2010 ). 

 A  biphosphonate compound  ,  zoledronic acid   suppressed MMP-9 expression by 
tumor associated  macrophages   and reduced the association of  VEGF   with its recep-
tor on ECs (Giraudo et al.  2004 ). Scavelli et al. ( 2007 ) demonstrated tha zoledronic 
acid markedly inhibit in vitro proliferation, chemotaxis, and capillarogenesis of 
MMECs, and  angiogenesis   in vivo in the  CAM   assay (Fig.  5.1 ). Moreover, mevas-
tatin, a specifi c inhibitor of the mevalonate pathway, reverts the  zoledronic acid   and 
anti-angiogenic effect, indicating that the drugs halts this pathway.

    Rapamycin  , an inhibitor of “mammalian target of rapamyicin” (mTOR), is a 
natural macrolide antibiotic, used for some years as immunosuppressive agent after 
organ transplantation (Motzer et al.  2008 ).  Rapamycin   is antiangiogenic (Guba 

  Table 5.3    Registered kinase 
inhibitors  

 Imatinib (Glivec, Gleevec) 
 Gefi tinib (Iressa) 
 Erlotinib (Tarceva) 
 Lapatinib (Tykerb) 
 Dasatinib (Sprycel) 
 Nilotinib (Tasigna) 
 Sunitinib (Sutent) 
 Sorafenib (Nexavar) 
 Pazopanib (Votrient) 
 Crizotinib (Xalkori) 
 Vandetanib (Caprelsa) 
 Ruxolitinib (Jakafi ) 
 Tofacitinib (Tasocitinib) 
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et al.  2002 ) and inhibits endothelial cell cycle (Fig.  5.2 ) and primary and metastatic 
tumor growth (Marimpietri et al.  2005 ,  2007 ; Phung et al.  2007 ). Xue et al. ( 2009 ) 
examined the effects of rapamycin on VEGF-induced  angiogenesis   and  lymphan-
giogenesis   with an adenovirus expressing VEGF-164 in the ears of adult nude mice, 
and demonstrated that  rapamycin   inhibited the earliest stages of  angiogenesis  , 
including mother vessel formation and increased vascular permeability, while later 
stages formation and  lymphangiogenesis   were unaffected.

   TNF-α promote  angiogenesis   and tumor growth by inducing a range of angio-
genic factors, thymidine phosphorylase, and MMPs (Aggarwall  2003 ). TNF-α 
antagonists inhibit infl ammatory cytokines, MMPs angiogenic activity and leuko-
cyte traffi cking to site of  infl ammation   (Feldmann  2002 ). A number of clinical trials 
of TNF-α antagonists alone, and in combination with other therapies, are currently 
under way in cancer patients. 

 Blocking PlGF exert an anti-infl ammatory activity, due to the fact that PlGF is a 
chemo attractant for VEGFR-1-positive  macrophages   (Luttun et al.  2002 ). Selective 
inhibition of platelet-endothelium interactions, using specifi c phenotypic character-
istics of tumor  endothelial cells   as target, may be a potential therapeutic tool to 
reduce tumor  angiogenesis  . For example, selective stimulation of the  platelet   PAR-4 
receptor may inhibit tumor angiogenesis by suppression of VEGF secretion and 
simultaneous enhancement of the release of  endostatin  . 

 Atiprimod has anti-infl ammatory activities in animal models of rheumatoid 
arthritis and is well tolerated in phase I trials (Lakings  2003 ), inhibits the prolifera-
tion of MM cells lines  in vitro  by inhibiting signal transducer and activator of 
 transcription 3 activation, thereby blocking the signaling pathway of IL-6, an angio-
genic cytokine expressed in  MM   (Amit-Vazina et al.  2005 ). 

 Germano et al. ( 2013 ) demonstrated that trabectidin, an anti-cancer agent 
approved for late-stage soft-tissue sarcoma, exert anti-tumor responses by depleting 
monocytes and  macrophages  . 

  Therapeutic strategies   may include inhibition of recruitment of  mast cells   and 
 macrophages   to the  tumor microenvironment   and blockade of pro-tumoral effects 

  Fig. 5.1     CAMs   treated with sponges loaded with VEGF165 or  multiple myeloma   endothelial 
cells (MMEC) conditioned media are surrounded by allantoic vessels developing radially toward 
the implant in a spoked-wheel pattern ( a  and  c ). No vascular response is detectable around the 
sponges loaded with vehicle alone ( b ).  Zoledronic acid   added to the conditioned media signifi -
cantly inhibits the angiogenic response ( d ) (Reproduced from Scavelli et al. ( 2007 ))       
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  Fig. 5.2    Inhibition of  endothelial cell   cycle progression by  vinblastine ( VBL )   and  rapamycin   
( RAP ). Endothelial cells were incubated for 48 h in the presence of complete medium (panel  a ), 
50 pM VBL (panel  b ), 0.5 nM  RAP   (panel  c ) or 50 pM VBL plus 0.5 nM RAP (panel  d ). BrdU 
uptake ( FITC ) vs. total cellular DNA content ( PI ) was evaluated by densitometric FACS analysis. 
 VBL   increased the percentage of cells with G2-M and sub-G1 DNA content.  RAP   increased the 
G1 fraction suggesting inhibition of the cell cycle from G1 to S phase.  VBL   plus RAP decreased 
the percentage of cells in S phase (Reproduced from Marimpietri et al. ( 2005 ))       
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and pro-angiogenic functions.  Mast cells   might act as a new target for the adjuvant 
treatment of tumors through the selective inhibition of  angiogenesis  , tissue remod-
eling and tumor promoting molecules, allowing the secretion of cytotoxic cytokines 
and preventing mast cell mediated immune-suppression. Pre-clinical studies using 
anti-cKIT antibodies (Huang et al.  2008 ), anti-TNF-α antibodies (Gounaris et al. 
 2007 ), or the  mast cells   stabilizer disodium cromoglycate (cromolyn) (Soucek et al. 
 2007 ) in mouse models have demonstrated promising results. 

 Clodronate-liposomes depleted  macrophages   and inhibited tumor  angiogenesis   
in mouse tumor transplantation models (Zeisberger et al.  2006 ). In the mouse cor-
nea model, killing of COX-2 positive infi ltrating macrophages with clodronate  lipo-
somes   reduces IL-1-β-induced  angiogenesis   and partially inhibits VEGF-induced 
 angiogenesis   (Nakao et al.  2005 ).  VEGF   inhibitors decrease macrophage recruit-
ment, and this effect may contribute to their anti-angiogenic activity (Giraudo et al. 
 2004 ). Specifi c inhibition of VEGFR-2 decreased tumor  macrophage   infi ltration 
into orthotopic pancreatic tumors (Dineen et al.  2008 ). CSF-1 receptor (CSF1R) 
kinase inhibitors exhibit anti-angiogenic and anti-metastatic activity in tumors 
(Manthey et al.  2009 ). Anti-CSF-1 antibodies and antisense oligonucleotides sup-
press macrophage infi ltration and xenograft tumor growth in mice (Aharinejad et al. 
 2002 ,  2004 ). Blockade of  macrophage   recruitment with CSF1R-signalling antago-
nists in combination with paclitaxel decreased vessel density, reduced tumor growth 
and pulmonary  metastasis  , and improved survival of mammary tumor-bearing mice 
(De Nardo et al.  2011 ). Trabectidin is a natural product derived from a marine 
organism with potent anti-tumor activity, cytotoxic for TAMs, and inhibits the pro-
duction of CCL-2 and IL-6 (Germano et al.  2013 ). 

 In addition to its anti-angiogenic activity,  thalidomide   enhances T-cell- and 
NK-cell-mediated immunological responses, induces caspase-8 mediated apopto-
sis, and down-regulates IL-6 production within the  BM   microenvironment in  MM   
(Davies et al.  2001 ; Mitsiades et al.  2002 ). A  thalidomide   analogue,  lenalidomide  , a 
 COX-2 inhibitor   and an anti-angiogenic agent, is currently used in the treatment of 
 MM   (Dimopoulos et al.  2007 ). Lenalidomide reduces the expression of  VEGF   and 
FGF-2 (Barlett et al.  2004 ). Lenalidomide exerts in vivo in the  CAM   assay a rele-
vant anti-angiogenic effect, whereas in vitro lenalidomide inhibits MMECs prolif-
eration and migration (De Luisi et al.  2011 ). Moreover, MMECs treated with 
 lenalidomide   show changes in VEGF/VEGFR-2 signaling pathway and in several 
proteins controlling EC motility, cytoskeleton remodeling, as well as energy metab-
olism pathways (Fig.  5.3 ) (De Luisi et al.  2011 ). Moreover, lenalidomide acts by 
disrupting the stroma support within the BM that is needed for the production of a 
range of cytokines.  Lenalidomide   inhibits VEGF-induced PI3K-Akt pathway sig-
naling and HIF-1α expression (Lu et al.  2009 ), exerts an anti-TNF-α activity, modu-
lates the immune response stimulating T cells and NK cells activities, induces 
apoptosis of tumor cells, and decreases the binding of  MM   cells to BM  stromal cells   
(Mitsiades et al.  2002 ; Dredge et al.  2005 ; Hideshima et al.  2007 ; Görgϋn et al. 
 2010 ). A retrospective analysis of clinical trials, with previously treated relapsed/
refractory MM, demonstrated an improved response rate and increased median for 
patients treated with lenalidomide and dexamethasone, compared to those treated 
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only with dexamethasone (Wang et al.  2008 ; Dimopoulos et al.  2007 ; Weber et al. 
 2007 ). In a phase 2 study, lenalidomide/bortezomib/dexamethasone gave responses 
in 84 % of relapsed/refractory patients, including complete response or near com-
plete response in 21 % (Dimopoulos et al.  2010 ), and produced responses in 
98–100 % of newly-diagnosed patients (Barosi et al.  2012 ).

    Bortezomib   induces EC apoptosis (Williams et al.  2003 ), and inhibits VEGF, 
IL-6, Ang-1 and Ang-2 and IGF-1 secretion in BMSCs and ECs derived from 
patients (Fig.  5.4 ) (Hideshima et al.  2003 ; Roccaro et al.  2006 ). The use of bortezo-
mib in pre-transplant induction therapy revealed a higher response rate, compared 
to other induction regimens (Rajkumar and Sonneveld  2009 ).  Bortezomib   and  zole-
dronic acid   inhibit  macrophage   proliferation, adhesion, migration, and expression 
of angiogenic cytokines and  angiogenesis   on Matrigel in  MM   patients. Moreover, 

  Fig. 5.3     Lenalidomide   inhibits  angiogenesis   in  CAM   and Matrigel. ( a ) CAMs were incubated 
with gelatin sponges loaded with SFM ( left ) and with conditioned medium of  multiple myeloma   
( MM ) plasma cells either alone ( middle ) or supplemented with 1.75 mmol/L lenalidomide ( right ). 
Note the inhibition of MM angiogenesis by the drug. ( b ) lenalidomide inhibits  MM    endothelial 
cells   ( MMEC )  angiogenesis   in the Matrigel in a dose-dependent manner. MMECs arranged to form 
a closely knit capillary-like plexus ( left ), whereas the tube formation was gradually blocked with 
increasing  lenalidomide   doses with a full inhibition at 2.5 mmol/L ( right ). ( c ) skeletonization of 
the mesh was followed by measurements of its topological parameters: mesh area, vessel length, 
and branching points. Data are presented as mean ± SD of percent inhibition.  Len   lenalidomide   
(Reproduced from De Luisi et al. ( 2011 ))       
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VEGFR-2 and ERK1/2 phosphoactivation as well as NF-kB are also inhibited 
(Moschetta et al.  2010 ). Finally,  bortezomib   induces the differentiation of  MSCs   
into  osteoblasts   and induces apoptosis of  osteoclasts   (Mukhejee et al.  2008 ; Chauhan 
et al.  2008 ).

   The administration of inhibitors of osteoclasts activity, including bisphospho-
nates, not only prevents the MM-induced bone destruction, but also exerts an anti- 
angiogenic activity. Therapeutic doses of  zoledronic acid   markedly inhibit  in vitro  
proliferation, chemotaxis and angiogenesis of MM  endothelial cells   and  in vivo  
 angiogenesis   in the  CAM   assay (Scavelli et al.  2007 ). These data suggest that the 
zoledronic acid antitumoral activity in  MM   is also sustained by  anti-angiogenesis  , 
which would partly account for its therapeutic effi cacy in MM (Henk et al.  2012 ; 
Morgan et al.  2012 ). 

 Vessel leakiness and chaotic blood fl ow may impair the bioavailability of 
 chemotherapeutic drugs meant to target the  tumor blood vessels   and some of these 
morphological abnormalities may be reversible or normalized. The concept of 

  Fig. 5.4     Bortezomib   inhibits  angiogenesis   in the  CAM   assay. The CAM was incubated with a 
gelatin sponge loaded with RPMI ( a ) 200 Ag/mL FGF-2 ( b ) 20 nmol/L bortezomib ( c ) and with 
MMECs conditioned media (CM) either alone ( d ) or with 20 nmol/L bortezomib ( e ).  Bortezomib   
signifi cantly inhibited basal  angiogenesis   induced by sponges loaded with vehicle alone ( c ). Moreover, 
 CAM   implanted with FGF-2 ( b ) or with MMECs CM ( d ) increased macroscopic vessel counts. 
 Bortezomib   signifi cantly inhibited MMECs CM–induced angiogenesis ( e ), evidenced both by 
macroscopic vessel counts and by the number of eggs out of total with >50 % inhibition in the 
angiogenic response compared with vehicle (Reproduced from Roccaro et al. ( 2006 ))       
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“ normalization” of tumor blood vessels by anti angiogenic drugs was introduced by 
Rakesh Jain in 2001. The state of normalization is probably transient, and depen-
dent on the dose and duration of the treatment (Table  5.4 ).

    VEGF   inhibition could temporarily restore or normalize the function of tumor- 
associated vasculature, decreasing vascular permeability in conjunction with 
 restoration of sustained pressure gradients, as demonstrated by intravital imaging 
studies in preclinical models and in cancer patients (Fukumura et al.  2010 ), thereby 
enhancing systemic delivery of oxygen or perfusion of cytotoxic agents to intratu-
moral sites (Tong et al.  2004 ; Jain  2005 ). Moreover, abrogation of  VEGF   signaling 
increases collagenase IV activity, leading to restoration of normal BM (Winkler 
et al.  2004 ), which generally in tumors has an abnormally thickness (Baluk et al. 
 2003 ). 

 Temporal vascular nomalization induces vascular regression, which causes 
tumor hypoxia (Sato  2011 ).  Hypoxia   could alter the property of cancer cells through 
the induction of HIF-1, as HIF-1 is reported to be involved in the induction of genes 
that induce invasive and metastatic properties of tumor cells (Semenza  2003 ). 
 Hypoxia   generated by  angiogenesis   inhibition triggers pathways that make tumors 
more aggressive and metastatic and less sensitive to anti-angiogenic treatment, as 
demonstrated by Paez-Ribes et al. ( 2009 ), who used blocking VEGFR-2 antibodies 
to mouse models of pancreatic neuroendocrine carcinoma and glioblastoma, and 
found that cancers showed heightened invasiveness or  metastasis  . 

 Helfrich et al. ( 2010 ) demonstrated in spontaneously developing  melanomas   of 
MT/ret transgenic mice after using anti-VEGF therapy and in human melanoma 
metastases taken at clinical relapse in patients undergoing adjuvant treatment with 
bevacizumab, that tumor vessels which are resistant to anti-VEGF therapy are 
 characterized by enhanced vessel diameter and normalization of the vascular bed by 
coverage of mature  pericytes  . 

 VEGFR-2 blockade can lead to the upregualtion of Ang-1 that increase  pericyte   
coverage of the vessels (Winkler et al.  2004 ). Ang-2 plays a more important role in 

  Table 5.4    Tumors with 
pre-clinical evidence of 
tumor vessel normalization 
upon anti-angiogenic 
treatment  

  Melanoma   
 Breast 
 Ovarian 
  Glioblastoma multiforme   
 Fibrosarcoma 
 Squamous carcinoma 
 No small cell lung cancer 
 Pancreatic 
 Liver fi brosarcoma 
 Insulinoma 
 Lung 
 Insulinoma 
 Vestibular schwannoma 
 Colon 
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tumor  angiogenesis   than it does in normal  angiogenesis  , is responsible for blood 
vessel destabilization in vasculature surrounding tumors. In glioblastoma patients, 
the Ang-1/Ang-2 ratio correlates with survival (Sie et al.  2009 ) and  vascular 
 normalization  , whereas high Ang-2 levels correlate with resistance to anti-VEGF 
therapy (Batchelor et al.  2010 ). 

 Blockade of  VEGF   signaling with the  VEGFR    tyrosine kinase inhibitor    cedira-
nib   signifi cantly reduced levels of Ang-2 in some patients, even if the decrease was 
transient and modest (Batchelor et al.  2010 ). Chae et al. ( 2010 ) expressed Ang-2 in 
an orthotopic glioma model and demonstrated that ectopic expression of Ang-2 had 
no effect on vascular permeability, tumor growth, or survival, but it resulted in 
higher vascular density, with dilated vessels and reduced mural cell coverage. When 
combined with anti-VEGFR-2 treatment, Ang-2 destabilized vessels and compro-
mised the survival benefi t of VEGFR-2 inhibition by increasing vascular permeabil-
ity, suggesting that VEGFR-2 inhibition normalized tumor vasculature, whereas 
 ectopic expression of Ang-2 diminished the benefi cial effects of VEGFR-2 block-
ade by inhibiting vessel normalization.        
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